Skip to main content
AMERICAN SOCIETY OF
BREWING CHEMISTS

DEI Image
Join | Renew | Contact | Log In
Search
  • About
    • Directories
    • DEI Resources
    • Social Media Kit
    • Contact Us
  • Membership
    • My ASBC Account
    • Join
    • Renew
    • ASBC Connect Community
    • Job Center
    • Corporate Membership
    • Volunteer
    • Student Resources
    • Awards
    • Project Funding
    • ASBC Badges
  • Methods
    • Methods of Analysis
    • About
    • Tools
    • FAQ
    • Subscription Options
  • In the Lab
    • Methods Videos
    • Lab Proficiency Program
    • Reference Materials and Gauges
    • Fishbone References
    • Grow Your Own Lab
    • Sensory Analysis
    • Sampling Plan
    • Green Chemistry
  • Publications
    • Journal
    • Books
    • Technical Committee Reports
    • Advertise
  • EventsCurrently selected
    • 2026 ASBC & CIBD Meeting
    • Brewing Summit 2025
    • Brewing Summit Rewind
    • Webinars
    • WBC Rewind
    • Meeting Archives
  • Store
Skip navigation links
2023 Quality Course
2023 ASBC Meeting
2021 Meeting
2019 ASBC Meeting
2019 ASBC Quality Course
2019 Joint Yeast Symposium
2018 Meeting
2017 Meeting
2016 World Brewing Congress
Proceedings
Program Book (PDF)
2015 Meeting
2014 Meeting
2013 Meeting
2012 World Brewing Congress
2011 Meeting
American Society of Brewing ChemistsEventsMeeting Archives2016 World Brewing CongressProceedings092

Display Title

Page Content
​

92. Dynamic light scattering and the confirmation of nanobomb theory in primary gushing

David Riveros (1), Guy Derdelinckx (1), Almeida Fran (1); (1) KULeuven, Leuven, Belgium

Analytical
Poster

Although primary gushing in beer is not a widespread phenomenon within the global beer industry. The presence of one gushing event in front of a client is bad enough to affect greatly the brand image of a company. Primary gushing is created from the marriage between surface-active molecules, in this case class II hydrophobins, and CO2 present naturally in beer. Due to the amphipatic nature of hydrophobins, these will form elastic monolayers at the gas-liquid interface present at the bottleneck of the beer bottle. The hydrophobic part of this monolayer will adsorb strongly CO2 molecules that, by the movement of the bottle during the process, will be trapped and stabilized in the shape of a nanobubble. These nanobubbles of about 100 nm at atmospheric pressure will shrink to about 60-70 nm at 4 bar, remaining stable until the opening of the bottle, when sudden expansion of the bubble will break them, releasing enough energy to induce nucleation and strong overfoaming. The detection of 100 nm nanobubbles has been done already by dynamic light scattering (DLS); however, the detection of stabilized CO2 nanobubbles inside the bottle at 4 bar had remained elusive until now. In an effort to solve this problem we used a pressured DLS, as well as known experimental conditions of the sample, such as CO2 concentration, opening temperature and hydrophobin concentration. After this, the detection of 60-70 nm nanobubbles has been solved with reproducible results. These exciting finding are not just the experimental proof of nanobomb theory, but an additional step to include the DLS method of detection for primary gushing in beer.

David Riveros received a B.S. degree in microbiology from Pontificia Universidad Javeriana in Colombia. Later on, in 2008, he obtained his master’s degree in Valdivia (Chile). He is now pursuing his doctoral studies at Katholieke Universiteit Leuven in Leuven, Belgium, under the supervision of Prof. Guy Derdelinckx. He is working in a team fully devoted to understanding and controlling primary gushing phenomenon.

View Presentation

About

Join

Contact

Advertise

Privacy Policy

Email Deliverability