Skip to main content
AMERICAN SOCIETY OF
BREWING CHEMISTS

DEI Image
Join | Renew | Contact | Log In
Search
  • About
    • Research Council
    • Directories
    • DEI Resources
    • Social Media Kit
    • Contact Us
  • Membership
    • My ASBC Account
    • Join
    • Renew
    • ASBC Connect Community
    • Job Center
    • Student Resources
    • Awards
    • Volunteer
    • Apply for Funding
    • Corporate Membership
  • Methods
    • Methods of Analysis
    • About
    • Tools
    • FAQ
    • Subscription Options
  • In the Lab
    • Methods Videos
    • Lab Proficiency Program
    • Reference Materials and Gauges
    • Fishbone References
    • Grow Your Own Lab
    • Sensory Analysis
    • Sampling Plan
    • Green Chemistry
  • Publications
    • Journal
    • Books
    • Technical Committee Reports
    • Advertise
  • EventsCurrently selected
    • Brewing Summit 2025
    • Webinars
    • WBC Rewind
    • Meeting Archives
  • Store
Skip navigation links
Brewing Summit 2025
Webinars
WBC Rewind
Meeting Archives
2023 Quality Course
2023 ASBC Meeting
2021 Meeting
2019 ASBC Meeting
2019 ASBC Quality Course
2019 Joint Yeast Symposium
2018 Meeting
2017 Meeting
2016 World Brewing Congress
2015 Meeting
2014 Meeting
2013 Meeting
2012 World Brewing Congress
2011 Meeting
American Society of Brewing ChemistsEventsMeeting Archives2012 World Brewing Congress240

Display Title
Exploring and exploiting the natural phenotypic landscape of yeast

Page Content

Yeast and Fermentation Session
Jan Steensels, CMPG Laboratory for Genetics and Genomics
Co-author(s): Kevin Verstrepen, CMPG Laboratory for Genetics and Genomics, Belgium

ABSTRACT: Although yeast has been used for more than 7,000 years for the fermentation of foods and beverages, the yeasts used are often suboptimal. In terms of biodiversity, industrial yeasts only represent the tip of the proverbial iceberg. Many industrial yeasts are genetically related to each other, and many share similar traits. In many cases, the particular yeast used for a specific industrial application is not the best possible yeast. This is especially true in the beer brewing industry, where brewers often use a particular yeast because of historic rather than scientific reasons. To explore the phenotypic landscape of yeasts and investigate the full potential of Saccharomyces cerevisiae and other species, we examined a collection of over 500 different yeast strains from different origins. These yeasts were subjected to a plethora of industrially relevant, high throughput assays. These experiments focused on tolerance to different stressful environments, sugar assimilation, production of certain enzymes and fermentation efficiency. Secondly, we also measured the production of about 20 of the most important aroma compounds. Together, we have now obtained more than 150 measurements for each yeast strain. This huge dataset provides an excellent tool for selection of yeast strains with very specific properties. In other words, producers can now select the yeast that best suits their needs. Moreover, we have also identified several non-conventional yeasts with a clear potential for industrial applications. Last but not least, our results provide a good basis for further breeding of novel, superior yeasts that are ideally suited for specific applications.

Jan Steensels received a B.S. degree in bioscience engineering from the University of Leuven, Belgium in 2008 and an M.S. degree in bioscience engineering, major in cell and gene technology, minor in industrial microbiology< from the same university in 2010. He did his master thesis in the Centre for Malting and Brewing Science in 2009–2010. In 2010, Jan joined the VIB laboratory for Systems Biology led by Kevin Verstrepen as a Ph.D. student.

VIEW PRESENTATION 240

About

Join

Contact

Advertise

Privacy Policy

Email Deliverability