Overexpression of MAL and GSH genes with selected hybrid S. cerevisiae and induction with a specific maltose-amino acids medium

JULIEN BILLARD (1), Huu Vang Nguyen (2), Mustapha Nedjma (3)
(1) R&D Department, Spindal AEB Group, Gretz-Armainvilliers, France; (2) INRA, AgroParisTech, Thiverval-Grignon, France; (3) nedjman@aol.com

The development and production of selected beer yeast for fast and complete metabolization of maltose, maltotriose, and glucose, the three main fermentable sugars in wort, has been considered. Maltose, maltotriose, and glucose are the most abundant fermentable sugars in wort; in case of incomplete fermentation, maltotriose can cause a range of qualitative problems in beer and ethanol loss. Fermentation performance was followed through the optimization of the culture medium, reproducing accurately the wort composition by monitoring yeast growth, ethanol synthesis, original gravity and attenuation, and sugar consumption during the fermentation process. Beer flavor was evaluated through the content of higher alcohols, volatile esters, and aroma compounds. Here, we investigated the influence the medium composition on the expression of different MAL genes, especially those encoding the maltose and maltotriose transporters. We tried to correlate the impact of yeast metabolism with beer aroma profile. The equilibrium and reproducibility of the aromatic profiles were also analyzed and compared with traditional yeasts after successive inoculation: mutation, membrane permeability. Flavor expression and stability is generally affected by oxidation during beer processing and storage. In order to improve aroma quality and stability, the GSH1 gene, which encodes g-glutamylcysteine synthetase and glutathione synthetase, an enzyme essential for glutathione (g-glutamyl-L-cysteinyl-glycine) synthesis, is needed. The glutathione is one small peptide that can be excreted from the yeast cells during fermentation. The over-expression of GSH1 in brewer’s yeast may improve the GSH content in beer. The glutathione “GSH” is an important antioxidant against the effects of oxygen and other oxidative compounds. This is particularly beneficial to beer flavor protection and stability during beer storage. Accordingly, GSH plays an important role in balancing the redox potentials in different subcellular compartments and maintaining the redox balance in Saccharomyces cerevisiae. The effect of the medium containing precursor amino-acids, salts, carbon, and nitrogen sources upon the yield and the productivity of glutathione from the isolated strain of S. cerevisiae and the corresponding hybrid were investigated in detail. Another way to exploit the potential of the selected yeast, an interesting solution, is its hybridization with S. cerevisiae or S. uvarum, by crossing of spores or cells from selected strains. Hybrids constructed in this way, using strains from our collection, showed increasing enzymatic expression thanks to the union of the two parental genomes.

Julien Billard is currently a microbiologist in the Research and Development laboratory of AEB Group. He is currently working on the selection of yeast strains for fermentation of beer and specific propagation for expression of MAL and GSH.