Skip to main content
AMERICAN SOCIETY OF
BREWING CHEMISTS

DEI Image
Join | Renew | Contact | Log In
Search
  • About
    • Research Council
    • Directories
    • DEI Resources
    • Social Media Kit
    • Contact Us
  • Membership
    • My ASBC Account
    • Join
    • Renew
    • ASBC Connect Community
    • Job Center
    • Student Resources
    • Awards
    • Volunteer
    • Apply for Funding
    • Corporate Membership
  • Methods
    • Methods of Analysis
    • About
    • Tools
    • FAQ
    • Subscription Options
  • In the Lab
    • Methods Videos
    • Lab Proficiency Program
    • Reference Materials and Gauges
    • Fishbone References
    • Grow Your Own Lab
    • Sensory Analysis
    • Sampling Plan
    • Green Chemistry
  • Publications
    • Journal
    • Books
    • Technical Committee Reports
    • Advertise
  • EventsCurrently selected
    • Brewing Summit 2025
    • Webinars
    • WBC Rewind
    • Meeting Archives
  • Store
Skip navigation links
2023 Quality Course
2023 ASBC Meeting
2021 Meeting
2019 ASBC Meeting
2019 ASBC Quality Course
2019 Joint Yeast Symposium
2018 Meeting
2017 Meeting
2016 World Brewing Congress
2015 Meeting
2014 Meeting
2013 Meeting
2012 World Brewing Congress
2011 Meeting
Oral Presentations
Poster Presentations
American Society of Brewing ChemistsEventsMeeting Archives2011 Meeting

Display Title
Methods for increasing haze stability in wheat beer

Page Content
JOSH ADLER (1), Bourque Chris (1), R. Alex Speers (1)
(1) Dalhousie University, Halifax, NS, Canada

The presence of haze (turbidity) in beer is usually an objectionable trait. However, the presence of a strong and persistent haze is normally a distinctive and desirable sensory characteristic in Hefeweizen wheat beers. A common dilemma observed in the production of these beers is haze settling during the storage of the product in kegs. Previous research has concluded that the most frequently observed constituents of these hazes are suspended yeast cells and protein-polyphenol complexes. This study analyzed haze suspension stability in order to develop processing modifications that could increase haze intensity and stability. A commercial Hefeweizen wheat beer was treated with an assortment of post-production processes and their haze intensity and stability was monitored and compared to untreated control samples. Some of the processes included subjecting the beer to high shear and heating the beer to 90°C. The immediate results of shearing the beer produced a high turbidity that declined with time but retained a higher equilibrium haze value than the control (P > 0.05). In addition, a variety of other process modifications to enhance haze stability, including mashing regime, freezing, homogenization, and pasteurization, are currently under investigation. This poster will present the effects of these experimental treatments and the modeling of their haze stability over time. Proposed explanations of these observations will also be presented.

Joshua Adler received a B.S. degree in biology from Dalhousie University in Halifax, NS, Canada. While pursuing his degree, he became very interested in food science and was the first Dalhousie student to gain a minor in the discipline. His undergraduate thesis focused on problems encountered in wheat beer production, and he is continuing this research as an M.S. candidate. He hopes to contribute innovative research to the science of brewing, as well as pass on valuable knowledge as a teaching assistant for product development and quality assurance courses. A second research interest is the study of beer fermentability he is undertaking as part of a brewing research team at Dalhousie University. When outside the laboratory, Joshua can usually be found in the boxing ring training for an upcoming bout or enjoying a pint with his friends. One of his life’s ambitions is to visit as many of the world’s brewing and distilling regions as possible. He recently returned from the Lowland Region of Scotland, where he visited a variety of breweries and distilleries.

VIEW PRESENTATION


About

Join

Contact

Advertise

Privacy Policy

Email Deliverability