



Introduction

- By 2050 the global population will reach over 9 billion people.
- The Food and Agriculture Organisation of the United Nations (FAO) have projected that this growth will require 70% more food to be produced than between 2005 - 2007.
- Demand for water is increasing. By 2025 around 2/3 of the global population could be living under water stressed conditions.
- The food market, including brewing will need to be economically and environmentally sustainable to survive.

There is an opportunity to reduce our demands on the planets resources.

- Brewing uses both renewable and finite resources, with increasing demands on renewable resources.
- Beer is 95 % water, with up to 70 % more used to make it than is in the product itself.
- Water management policies implemented by global brewers have seen changes to the water to beer ratio:
- Many brewing companies have sustainability policies and frameworks, with some receiving international recognition for this.
- Sustainability can be used to drive businesses forward.
- Using local materials expansion of sorghum brewing.
- Low economic value (Figure 1) for the traditional uses of animal feed, fertiliser or as a last resort sending to landfill
- A circular economy is one that minimises the inputs and outputs, with as much reuse as possible, conforming to the waste hierarchy of reduce, reuse, recycle, recover, dispose
- Valorisation adds value to outputs and can potentially represent an additional income stream.
- It is proposed that breweries have an opportunity to become an integral part of the local bioeconomy.

2017 ASBC Annual Meeting The Future of Brewing in a Biobased Economy

Dawn L. Maskell, International Centre for Brewing & Distilling,

Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK.

2017 ASBC Annual Meeting

June 4–7, 2017 Sanibel Harbour Marriott Fort Myers, FL, U.S.A.

Conclusions: A Biobased future?

• Notionally all the outputs from a brewery have a further use and can create

• Need for different solutions for different scales of operation – appropriate

• Development of ideas and opportunities needs early engagement from

• There are funding opportunities specifically aimed at universities, research institutions and industry available to exploit these under-utilised resources. • Accessibility of options is an important determining factor – even for traditional routes. An small urban brewery will have different needs to a large

Consumers are becoming more informed and using this information to help

00		
	References	
	Balk et al., (2007). Diabetes Care, 30 , 2154 – 2163.	
	Baik <i>et al.</i> , (2007). Diabetes Care, 50 , 2154 – 2105. Bedini <i>et al.</i> , (2015). J. Pest. Sci., 88 , 583 – 592.	
	Bekatorou <i>et al.</i> , (2007). <i>Chem. Ind. Chem. Eng. Q.</i> , 13(2), 72 – 78.	
	Celus <i>et al.</i> , (2009). J. Agric Food Chem., 55 (21), 8703 – 8710.	
	Chae et al., (2001). Biores. Technol., $76(3)$, $253 - 258$.	
	Champagne <i>et al.</i> , (2003). <i>Elec. J. Biotechnol.</i> , ISSN: 0717-3458.	
	Connolly et al., (2014). Food Res. Int., 56 , 100 – 107.	
	Djukić-Vuković <i>et al.</i> , (2016). <i>Waste Manage</i> ment, 48 , 478-482.	
	Dzogbefia <i>et al.</i> , (2001). Food Biotechnol., $15(1)$, $25 - 34$,	
	Ferraz et al., (2004). Chem. Eng. J., 105 , $11 - 20$.	
	Ferraz <i>et al.</i> , (2013). <i>J. Mater. Civ. Eng.</i> , 25 (11), 1638 – 1646.	
	Fisher & Bipp, (2005). <i>Bioresour. Technol.</i> , 96 , 831 – 42. Huszcza & Bartmanska, (2008). <i>Ezy. Microb. Technol.</i> , 42 , 421 – 425.	
	•	
	Jiang et al., (2010). Biotechnol. Appl. Biochem., 160 (1), 244 – 254.	
	Klimek <i>et al.</i> , (2017). <i>J. Cleaner Prod.</i> , 141 , 812 – 817. Konscholig <i>et al.</i> (2012). <i>Biomaga Bioeng</i> 45 , 87, 94	
4)	Kopsahelis <i>et al.</i> , (2012). <i>Biomass Bioeng</i> . 45 , 87 – 94. Kuhbeck <i>et al.</i> , (2007). <i>Ezy. Microb. Tech.</i> , 41 (6-6), 711 – 720.	
	Linforth <i>et al.</i> , (2015). <i>J. Inst. Brew.</i> , 121 (4), 490 – 495. Machado <i>et al.</i> , (2009). <i>J. Appl. Microbiol.</i> , 106 , 1792 – 1804.	
	Machado <i>et al.</i> , (2009). <i>J. Appl. Microbiol.</i> , 100 , 1792 – 1804. Mccarthy <i>et al.</i> , (2013). <i>Food Chem.</i> , 141 (3), 2567 – 257	
	Mccarthy <i>et al.</i> , (2013). <i>Food Chem.</i> , 141 (3), 2307 – 237 Mccarthy <i>et al.</i> , (2014). <i>J. Sci. Food Agri.</i> , 94 (7), 1373 – 1379.	
	Moreira <i>et al.</i> , (2012). <i>Anal. Bioanal. Chem.</i> , 403 , 1019 – 1029.	
	Olivia-Teles & Gonçalves (2001). Aquaculture, 202 , 269–278.	
	Rakin <i>et al.</i> , (2004). <i>Food Chem.</i> , 100 , 599 – 602.	
	Rasco <i>et al.</i> , (1990). <i>J. Food Sci.</i> , 55 (2), 424 – 429.	
	Revert <i>et al.</i> , (2017). <i>Polymer Composites</i> , 38 (1), 40-47.	
	Rojoet <i>et al.</i> , (2014). <i>RSC Adv.</i> 4 , 12630 – 12639.	
	Roxalski <i>et al.</i> , (2013). <i>BioMed. Res. Int.</i> , Article ID 101089	
	Russ <i>et al.</i> , (2005). <i>Constr. Build. Mat.</i> , 19 (2), 117 – 126.	
	Saferková <i>et al.</i> , (2005). Chemosphere, 59, 831 – 835.	
	Spinelli <i>et al.</i> , (2016). <i>J. Supercritical Fluids</i> , 107 , 69 – 74.	
	Spinelli <i>et al.</i> , (2017). <i>Food Bioprod. Proc.</i> , 100 , 450 – 456.	
	Steiner <i>et al.</i> , (2015). <i>Eur. Food Res. Technol.</i> , 241 , 303 – 315.	
	Thammakiti <i>et al.</i> , (2004). Int. J. Food Sci. Technol., $39(1)$, $21 - 29$.	
	Van Craeyveld <i>et al.</i> , (2008). <i>J. Nutr.</i> 138 , 2348 – 2355.	
	Vieira et al., (2014). Ind. Crops Prod., 52, 136 - 143.	
	Vieira et al., (2017). Food Chem., 228 , 602 – 609.	
	Wallen & Marshall, (1979). J. Agric. Food Chem., 27, 635 – 636.	
	Waters <i>et al.</i> , (2012). <i>Eur. Food Res. Technol.</i> , 235 (5), 767 - 778.	
	White <i>et al.</i> , (2008). <i>FEMS Yeast Res.</i> , 8(7), 1175 – 1184.	
	Wilkinson et al., (2017). Bioenerg. Res., 10, 146 – 157.)
\backslash	Zhang & Wang, (2016). J. Clean. Prod., 112 , 3927 – 3934.	
	Zieminski et al., (2012). Waste Management., 32 , 1131 – 1137.	