Theory of Heat Exchange How and Why Driving Energy is Important in the Brewhouse

Ashton Lewis Beer Guy Paul Mueller Company Springfield, MO

Why Boil?

Sterilize Wort

Denature enzymes

Stabilize

Isomerize α-acids

Flavor development

Color development

Volatilize aromatics

Concentrate

Heat Wort

 $Q_1 = MC_p \Delta t$

August 14th, 2016

World Brewing Congress, Denver

M = Mass of wort

 $C_p = Specific heat$

 $\Delta t = Temperature$ differential

Evaporate Water Vapor

 $Q_2 = Mh_f$

August 14th, 2016

World Brewing Congress, Denver

Evaporate Water Vapor

M = Mass of wort

 $h_f = heat of vaporization$

What Does "Q" Represent?

Total energy required to heat wort before boiling and evaporate water during boiling.

What Does "Q" Represent?

Total energy required to heat wort before boiling and to evaporate water during boiling.

"Q" does not tell us anything about heating rate, efficiency, etc.

Heat Sources

- Hot Oil
 - Remote heating source
 - High Δt without pressure
 - Not common today

Heat Exchange Type

• Hot Oil

- Heating jacket or coil

Heat Sources

- Hot Water
 - Remote heating source
 - High Δt requires pressure
 - Not common today

Heat Exchange Type

• Hot Water

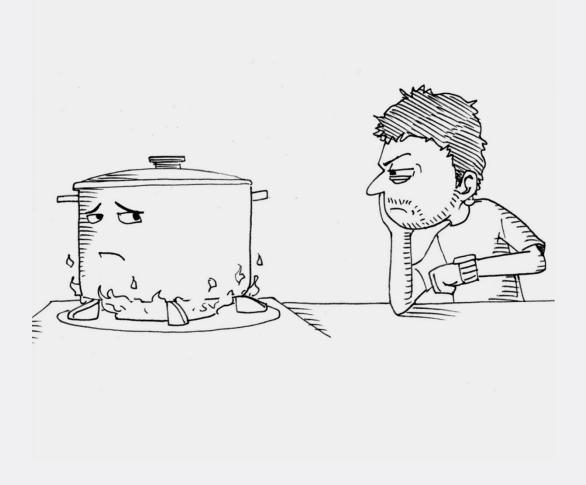
- Heating jacket or coil

Heat Sources

- Direct Fire
 - No remote piping required
 - Very high Δt
 - Works better with copper
 - Inefficient use of fuel
 - Lower initial investment
 - Not uncommon today

Heat Exchange Type – Direct Fire

- Firebox
- Internal coil


Heat Sources

- Steam
 - Remote heating source
 - Has latent heat
 - Q not solely dependent on ΔT

Heat Exchange Type - Steam

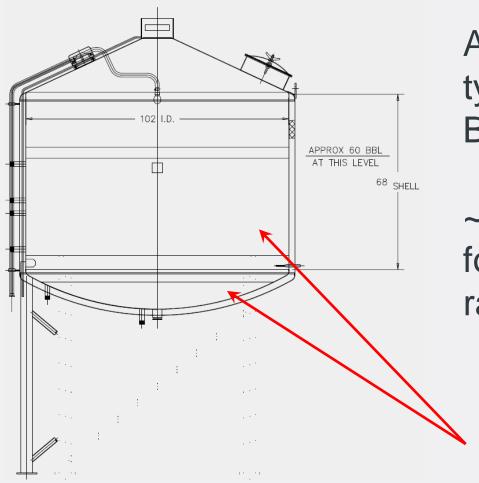
- Heating jacket or coil
- Heat exchangers
 - * Internal calandria
 - * External calandria
 - * Hybrid types

Let's Do it Quickly!

World Brewing Congress, Denver

Heat Transfer Rate

$$\frac{\Delta Q}{\Delta t} = q = \frac{UA\Delta T}{d}$$


- Q = heat flow
- t = time
- q = heat transfer rate
- U = overall heat transfer coefficient
- A = area
- T = temperature
- d = material thickness

Design Strategy #1

World Brewing Congress, Denver

Area Limitations & Jacketed Kettles ...

Available area limits this type of design to about 60 BBLs

~2.3 ft² / BBL is needed for hourly evaporative rates >6%

2.3 ft2 / BBL total area

I NEED MORE AREA!!!

More Area!

Percolators

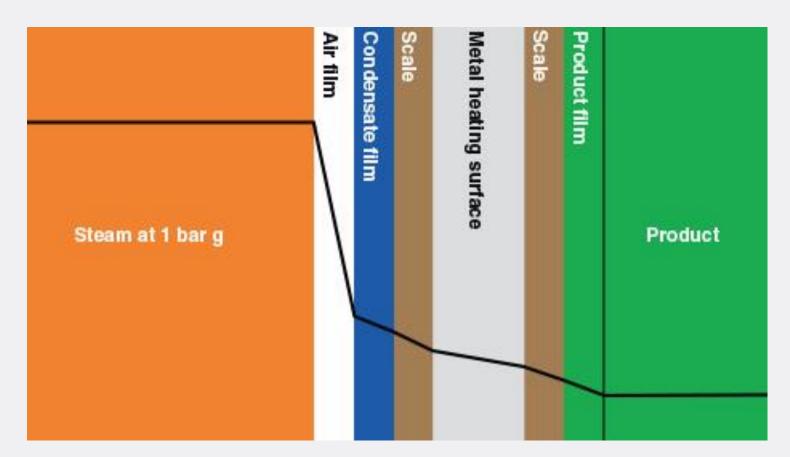
External Calandrias

Internal Calandrias

Hybrid Designs

Design Strategy #2

Design Strategy #2



$$\frac{1}{\mathrm{U}} = \frac{1}{h_o} + \frac{1}{k_w} + \frac{1}{h_i}$$

- h_o = convective heat transfer coefficient product side
- k_{w} = thermal conductivity of heat transfer surface
- h_i = convective heat transfer coefficient utility side

Steam Heat Flow Profile

http://www.spiraxsarco.com/Resources/Pages/Steam-Engineering-Tutorials/steam-engineering-principles-and-heattransfer/heat-transfer.aspx

August 14th, 2016

Increasing U-Value

1. Change heat transfer surface

 $k_{copper} \sim 400 \text{ W/mK}$

k _{stainless}~ 17 W/mK

Increasing U-Value

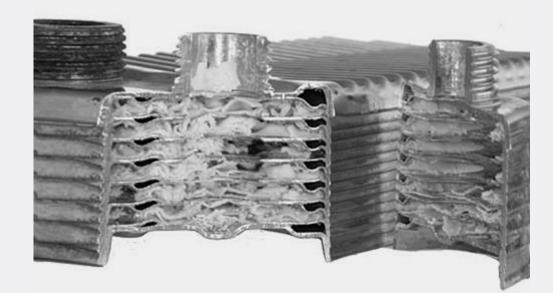
1. Change heat transfer surface

2. Increase turbulence at heat transfer surface

Turbulence

Surface shape Pumps Mixers Baffles

Turbulence on both sides of heat transfer surface


August 14th, 2016

Increasing U-Value

- 1. Change heat transfer surface
- 2. Increase turbulence at heat transfer surface
- 3. Keep it clean (scales, soils & air)

Examples of Fouling

Reduces U Can also reduce A

August 14th, 2016

Increasing U-Value

- 1. Change heat transfer surface
- 2. Increase turbulence at heat transfer surface
- 3. Keep it clean

4. Change the surface properties

Surface Properties

Dropwise Condensation

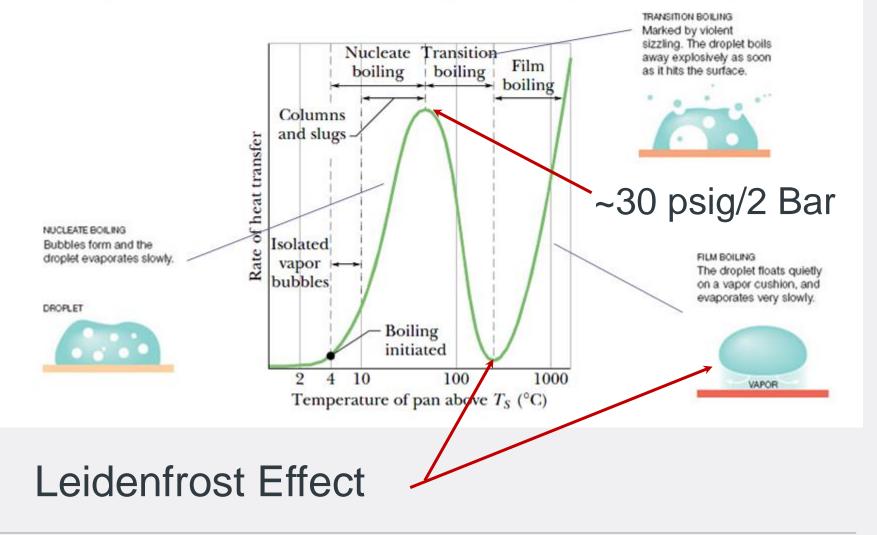
Film Condensation

http://news.mit.edu/2015/graphene-coating-more-efficient-power-plants-0529

Graphene film on copper tube increases U 4X

Surface Properties

Very clean stainless steel heat transfer surfaces, especially those that are very smooth, can reduce overall heat transfer.


This may seem counterintuitive.

Considerations When Using Steam

Excessive surface temperature increases fouling & thermal stress, especially during pre-boil heating phase, and reduces heat flux above the critical point.

Heat transfer for water (@ 1 atm)

S-shaped graph when heat flux (q") is compared to temperature.

Thiobarbituric Acid Index

Thiobarbituric Acid Index is a summary index that measures Maillard reaction products with a colorimetric metric.

Sample + acetic acid + TBA held 70°C for 70 minutes. Measure absorbance at 448 nm and compare to control prepared without TBA.

TBI = Δ Absorbance x 10 x dilution factor

<u>Considerations When Using</u> <u>Steam</u>

Excessive pressure increases fouling & thermal stress (TBA / TBZ value), especially during pre-boil heating phase

Condensate reduces area when not removed properly

Stalled traps

Flow/mass control and measurement

Summary Points

Modern kettles are steam heated

Summary Points

- Modern kettles are steam heated
- The trend is towards using lower steam pressure with lower total evaporative rates

Summary Points

- Modern kettles are steam heated
- The trend is towards using lower steam pressure with lower total evaporative rates
- Technological advances are generally focused on ways to increase U-Value and further the goals of boiling while reducing overall energy consumption

Thank You for the Opportunity!

Ashton Lewis Paul Mueller Company (417) 830-BEER alewis@paulmueller.com