

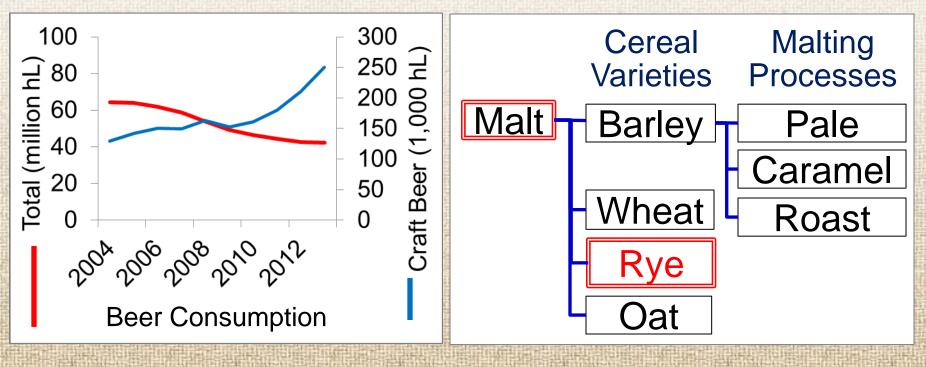
Addition of Xylanase and β-glucanase Under Optimal Conditions Improves Filtration Efficiency in Rye Malt Brewing

#ElevateBeer

Hideki Maeda¹, Masaru Kato¹, Hiroyuki Moriki¹, Thomas² Kunz² and Prof. Frank-Jürgen Methner²

¹ Research Laboratories for Alcoholic Beverage Technologies, Kirin Co., Ltd.,

² Research Laboratories for Brewing Technologies, Technical University of Berlin

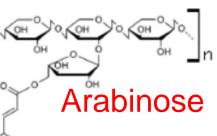

- 1. Background
- 2. Study objective
- 3. Results and discussion
 - <Brewing process>
 - (1) Enzyme addition at mashing-in
 - <Malting process>
 - (2) Modification of malt
 - (3) Enzyme addition during germination
- 4. Conclusions

1. Background

 Market share of craft beer is growing in Japan
Cereal varieties and malting processes largely contribute to taste and flavor

(Reference : Tax Agency of Japan)

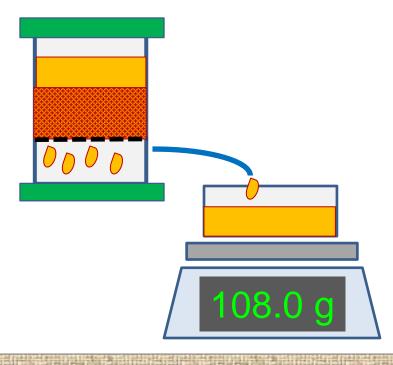
Characteristics of rye malt

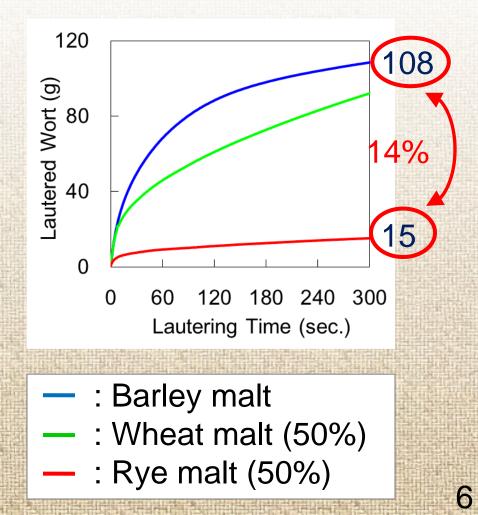

Rye malt imparts spicy taste

High arabinoxylan content, which decreases lautering and beer filtration efficiency

Content rate (%)	Barley	Wheat	Rye
β-glucan	2.9	0.7	0.7
Water-soluble	02	12	2.6
Arabinoxylan	0.2	1.2	2.0

(Reference: Professor Methner, TU- Berlin)



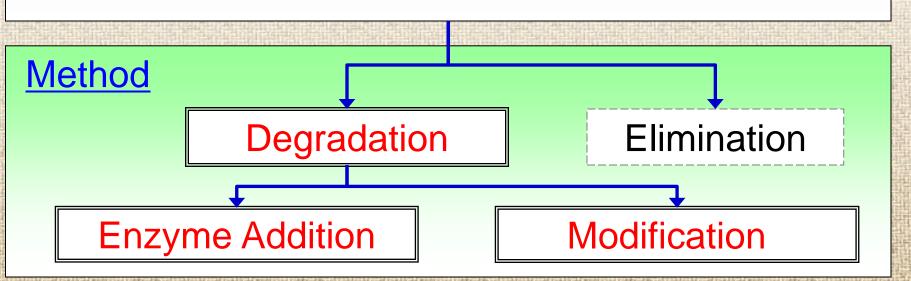

Lautering of rye malt

Rye malt decreased lautering efficiency

Lautering test

Monitoring the weight of lautered wort after 300 sec.

2. Objective

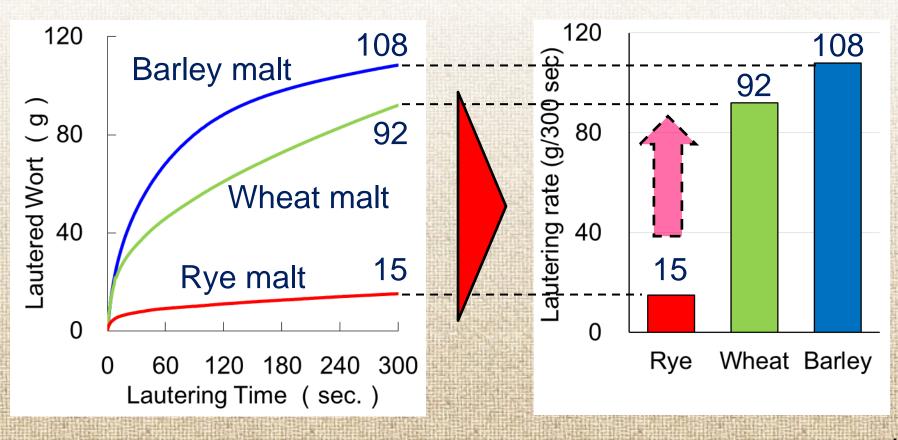


Study objective

Determine the reasons for the slow lautering rate of rye malt

<u>Goals</u>

- i) Understand the correlation between arabinoxylan levels and lautering rate
- ii) Find countermeasures to improve lautering rate



3. Results and discussions

Definition of lautering rate

Lautering rate was defined as the weight of wort (g) lautered in 300 sec

(1) Enzyme addition at mashing-in \succ Both arabinoxylan and β -glucans affect the lautering rate of rye malt [Commercial enzyme addition] sec) 70 59 60 Barley malt : rye malt = 50 : 50 50 47 -autering rate (g/300 Enzymes added at mashing-in 50 40 Activity (U/g) **Product Name** 30 (Novozymes) XYase **BGase** 15 20 No addition 10 0 2 Ultraflo L 45 2 3 4 1 Shearzyme 500L 3 550 **XYase** 1 / Ultraflo MAX 250 700 4 **BGase** 1

XYase : Xylanase BGase : β-glucanase

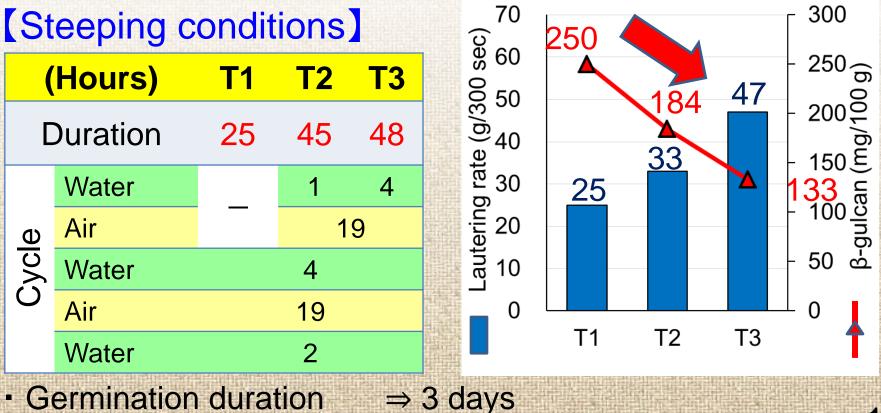
Hypothesis

By progress of modification, arabinoxylan and β-glucan can be degraded to improve lautering rate

➤ <u>Trial</u>

- Rye was malted at a pilot scale (800 g)
- Effects of malting conditions on lautering rate were evaluated

Steeping duration
Malting temperature

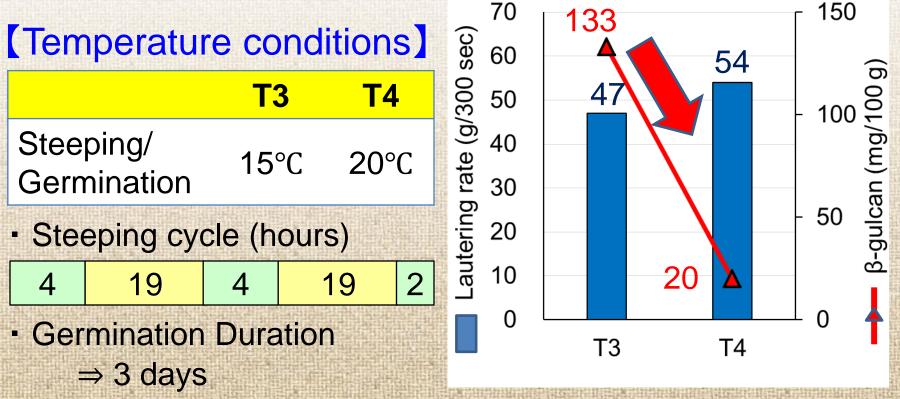


Outline of malting test

	T1	T2	T3	T4	T5	T6	T7	T8
Steep Duration(hr.)	25	45	48	48	48	48	48	48
Steep/Germ. Temp. (°C)	15	15	15 (20	20	20	20	20
Addition Substance					GA		XYase	
Process	No Addition			Ċ	Germi	natior	า	
Timing (hr.)				0	24	0	24	
GA : Gibberellic acid (0.2 mg/g-malt) XYase : Xylanase (Shearzyme 500L, 1.0 mg/g-malt)								

Effects of steeping duration

As steeping duration increased, β-glucans decreased and lautering rate increased



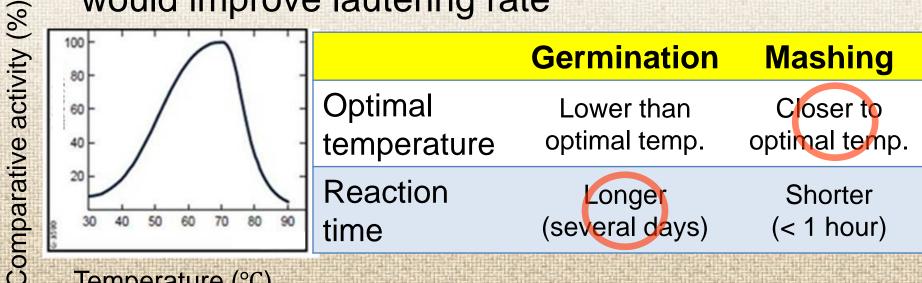
Malting temperature

⇒ 15°C

Effects of malting temperature

As malting temperature reached 20°C, β-glucan decreased sufficiently but lautering rate didn't so increase.

Increasing steeping duration and malting temp. increased lautering rate by decreasing β-glucans


Malting condition	Total steeping duration	Malting temperature
	25⇒48 h	15⇒20°C
Lautering rate	Higher	Higher
β-glucan amount	Lower	Lower

At 20°C steeping/germination conditions:
⇒ β-glucan amount was markedly reduced
⇒ Lautering rate was still 40% of that of barley malt

(3) Enzyme addition during germination

Hypothesis

- Endogenous xylanase activity is low during the malting process
- Adding commercial xylanase during germination (2)would improve lautering rate

Temperature (°C)

Optimal temperature of xylanase (Novozymes, 'Shearzyme 500L')

Effect of addition during germination

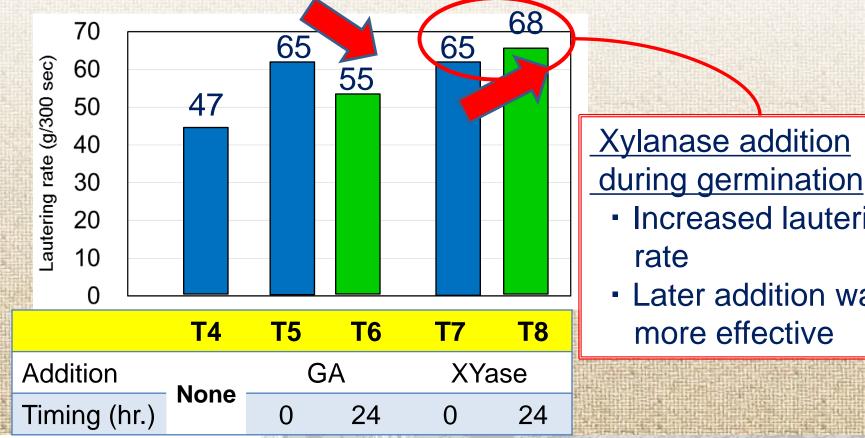
≻ <u>Trial</u>

Gibberellic acid or xylanase was sprayed directly on kernels $\begin{cases} 1 & 0 \text{ hours} \\ 2 & 24 \text{ hours} \end{cases}$ after germination start

	T 4	T5	T6	T7	T8
Addition		GA		XYase	
Timing (hr. after germ. start)		0	24	0	24

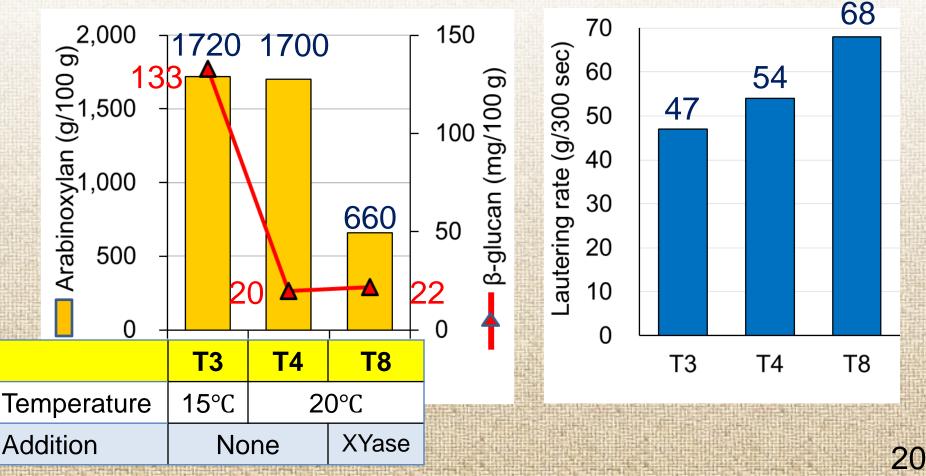
- GA : Gibberellic acid (0.2 mg/g-malt)
- XYase : Xylanase (Shearzyme 500L, 1.0 mg/g-malt)

Effect of addition during germination and addition timing


Increased lautering

Later addition was

more effective


rate

- Xylanase addition during germination improved lautering rate
- Gibberellic acid addition was also effective

Arabinoxylan degradation

Xylanase degraded arabinoxylan, resulting in increased lautering rate

- Exogenous xylanase degraded arabinoxylan, resulting in increased lautering rate
- Rising malting temperature was no effect to degrade arabinoxylan
 - ⇒ Rye malt has low endogenous xylanase activity
- ➤ Later addition of xylanase was more effective for increasing lautering rate
 ⇒ At later stages of germination, cell wall components are degraded and xylanase can more easily enter grains

Enzyme addition during germination vs. at mashing-in

Xylanase addition during mashing-in resulted in a similar lautering rate as addition during germination

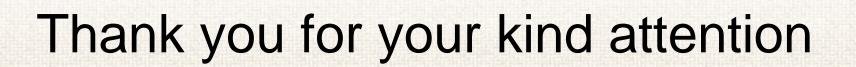
Commercial malt 120 **C1 C2** Lautering rate (g/300 sec) Variety **Barley** Rye 63% (Malted in pilot scale) 45<mark>0%</mark> **T9 T1 T8** 20°C 15°C Temp. **Xylanase** Addition None 0 Mashing-Timing Germi-Т9 C1 C2 T1 T8 nation in Pilot scale Commercial

4. Conclusions

Problem

Rye malt is associated with slow lautering rate

Mechanism


Endogenous xylanase activity of rye malt is too low to degrade arabinoxylan and results in poor lautering efficiency

Countermeasure

Adjusting malting conditions and adding xylanase during germination improve lautering rate

Hideki Maeda Research Laboratories for alcoholic Beverage Technologies Kirin Company, Limited

