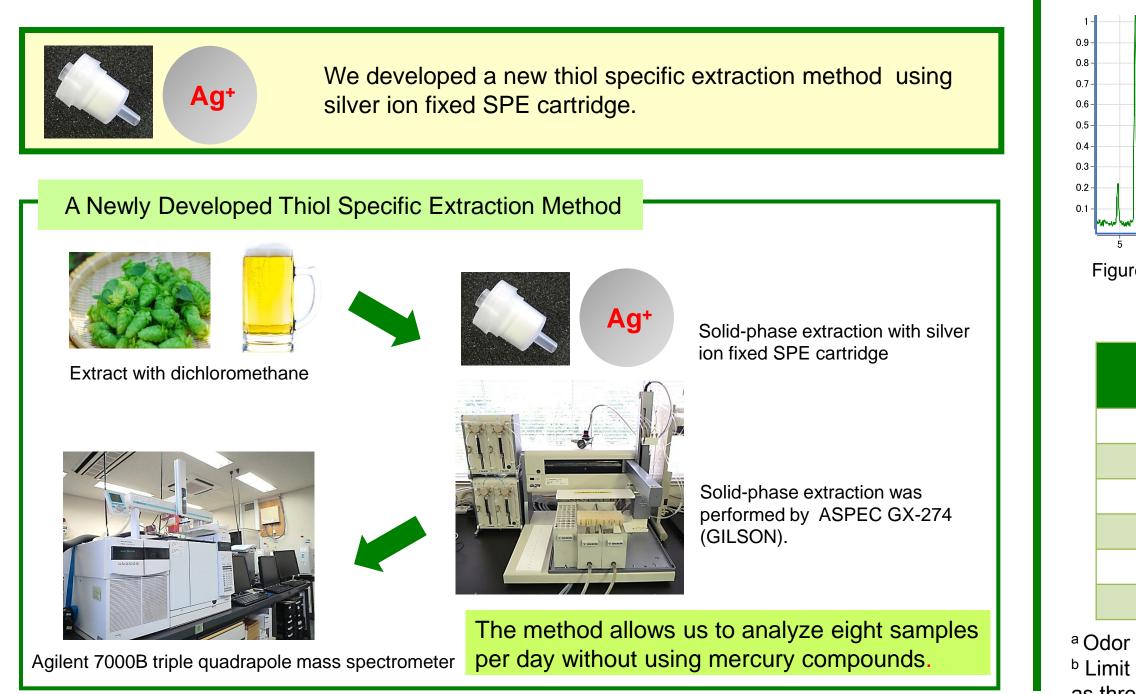


Development of a New Quantitation Method for Polyfunctional Thiols and Its Application for Investigation of the Characteristic Aroma of "Flavor Hops".

Introduction


Polyfunctional thiols are important compounds for the characteristic aroma of hops. Many researchers are interested in polyfunctional thiols, because of their characteristic flavors and very low thresholds. However, the thiol contents in beer are extremely low, and it is very difficult to analyze such low-level thiols. Moreover the most conventional analytical method uses a harmful reagent that contains a mercury compound. In this study, we developed a new method for quantitation of polyfunctional thiols without using mercury compounds and applied the method to investigating their contribution to the characteristic aroma of "flavor hops".

Development of a New Method for Thiols

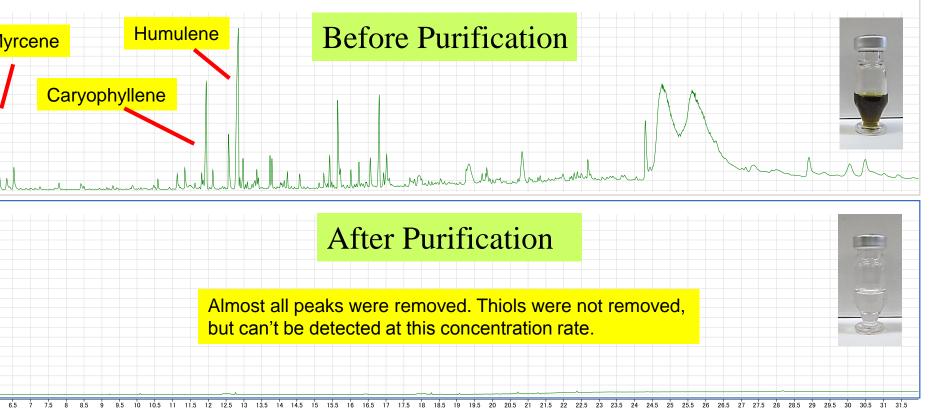
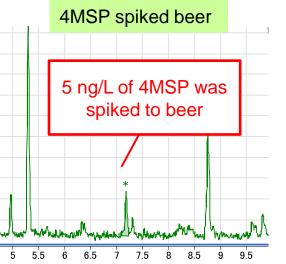
Problems of existing method

- ✓ The most conventional thiol specific extraction method uses a harmful reagent that contains a mercury compound.
- \checkmark There are some derivazation methods, but they can't be used with olfactometry.

References 1. Kishimoto et al., J. Agric. Food Chem. 2006, 54, 8855–8861.; 2. Takoi et al., J. Agric. Food Chem., 1998, 46, 1044-1048.; 5. Tokita et al., J. Agric. Food Chem. 2008, 66, 192-196.; 4. Tominaga et al., J. Agric. Food Chem. 2008, 66, 192-196.; 4. Tominaga et al., J. Agric. Food Chem., 1998, 46, 1044-1048.; 5. Tokita et al., J. Agric. Food Chem. 2008, 66, 192-196.; 4. Tominaga et al., J. Agric. Food Chem., 1998, 46, 1044-1048.; 5. Tokita et al., J. Agric. Food Chem. 2014, 72, 154-161.

WORLD BREWING CONGRESS 2016

Koji Takazumi¹, Kiyoshi Takoi², Koichiro Koie², Takeshi Kaneko¹, Youichi Tsuchiya¹, ¹SAPPORO HOLDINGS LTD., ²SAPPORO BREWERIES LTD.

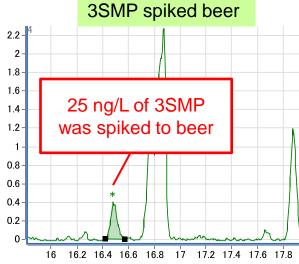
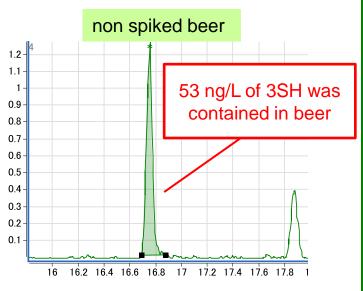

Figure 1. Total ion chromatogram of Hallertauer Tradition hop extract before or after solid-phase extraction with silver ion fixed SPE cartridge. Both extracts were ten times concentrated

Table 1. Recover	y and Re	peatability	y in Ho	ps

	Precursor (m/z)	Product (m/z)	CE (V)	Recovery (%)	CV (%)
1MSP	132	89	6	74	6.3
BSMP	134	100	0	93	4.1
3SH	134	82	2	97	5.3
SMPA	116	88	4	95	2.8
BSHA	116	88	4	100	3.2
BSMB	120	71	10	83	5.0
			-		

Recovery and repeatability were evaluated using spiked Hallertauer Tradition (n=6). The spiked concentration was 250 μ g/kg for 3SMP, 25 μ g/kg for the others.



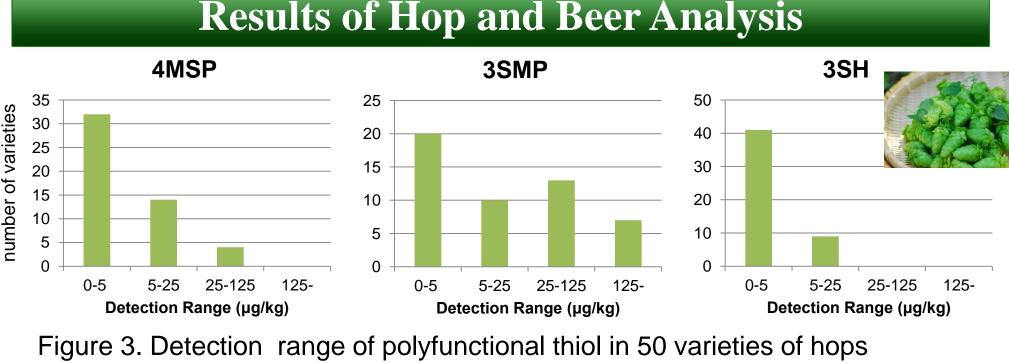

Figure 2. SRM chromatogram of non-spiked or spiked Pilsner beer.

Table 2. Limit of Detection and Calibration of Beer

	Odor threshold ^a (ng/L)	Limit of detection ^b (ng/L)	Cariblation rage (ng/L)	R ²
4MSP	1.5 ⁽¹⁾	1.4	0-100	0.998
3SMP	70 ⁽²⁾	7.1	0-1000	0.993
3SH	55 ⁽¹⁾	2.1	0-250	0.996
3SMPA	160 ⁽²⁾	2.9	0-100	0.997
3SHA	4 ⁽³⁾	3.7	0-100	0.997
3SMB	1500 (4)	18.8	0-1000	0.999

^a Odor thresholds are in beer except for 3SMB in model wine.

^b Limit of detection was evaluated using non-spiked or spiked (5ng/L or 25ng/L) Pilsner beer and defined as three times the S/N.

Variety	4MSP	3SMP	3SH	3SMPA	3SHA	3SMB
Hallertauer Tradition	<1	1	1	<1	<1	5
Hallertau Blanc	2	432	18	89	<1	11
Mandarina Bavaria	1	53	8	9	<1	7
Huell Melon	<1	<1	<1	<1	<1	5
Citra	67	52	18	2	<1	51
Mosaic	49	205	15	1	<1	26
Equinox	11	175	4	4	<1	25
Simocoe	23	88	10	1	<1	10
Cascade	17	18	5	1	<1	13
Nelson Sauvin	31	492	9	11	<1	64
Galaxy	21	34	8	1	<1	17

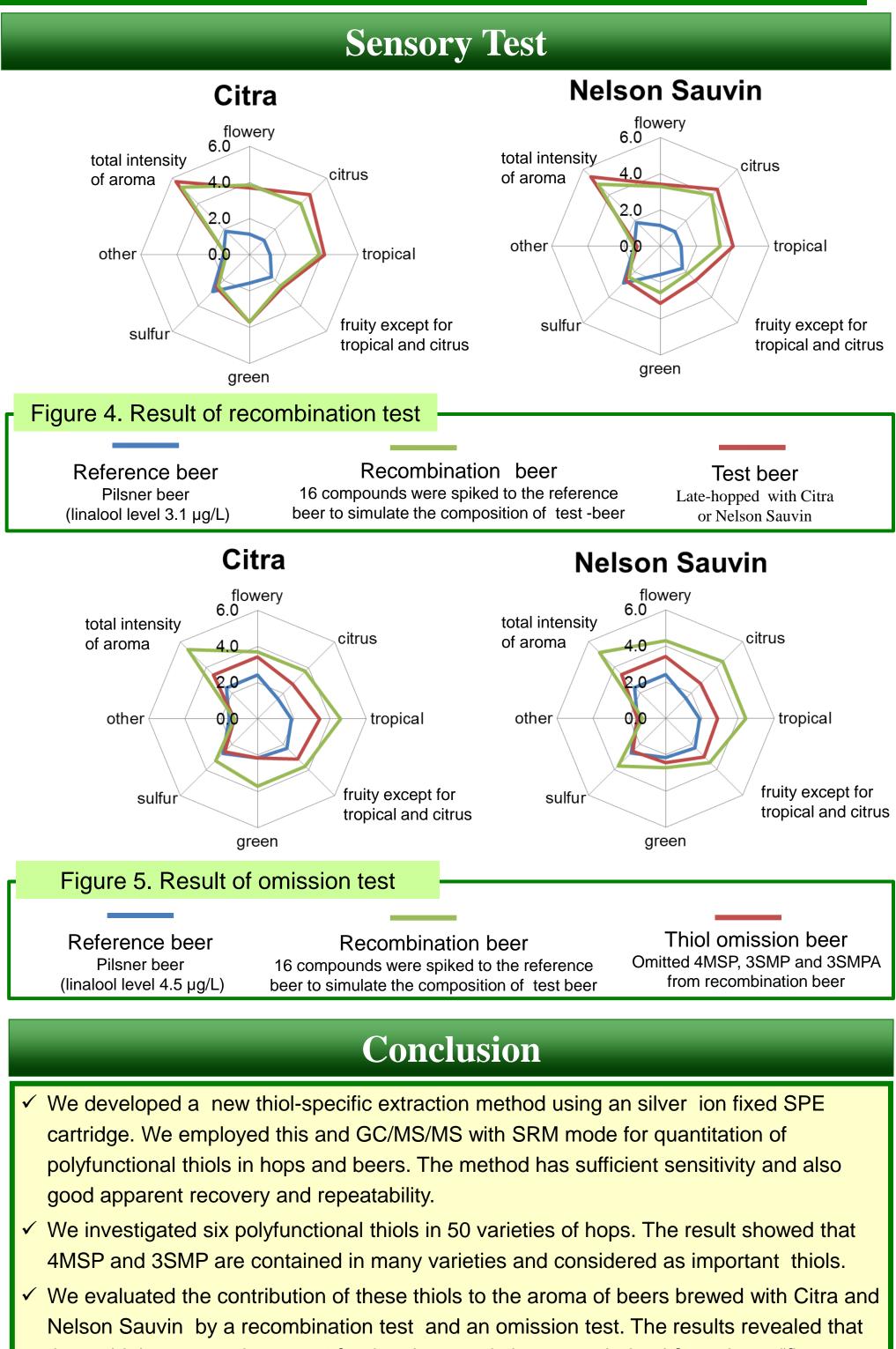

Test beers were made with late-hopping in our pilot-scale brewery. Hallertauer Tradition, Citra and Nelson Sauvin were used for flavoring at 1.6 g/L. Polyfuncitonal thiols were analyzed by the newly developed method. Other compounds were analyzed by SPME-GC-MS according to previously described methods ⁽⁵⁾.

Table 4. Result of Beer Analysis									
	Hallertauer Tradition	Citra	Nelson Sauvin		Hallertauer Tradition	Citra	Nelson Sauvin		
	Polyfunctional thiols (ng/l)								
4MSP	ND	48	28	3SH	94	119	91		
3SMP	11	80	578	3SHA	6	7	7		
3SMPA	ND	8	26	3SMB (µg/l)	1.02	1.51	1.51		
	Other compounds (µg/L)								
linalool	128	219	74	ethyl 2-methylpropanoate	2.9	3.9	7.0		
geraniol	1.8	12.0	6.8	ethyl 2-methylbutanoate	0.8	0.8	1.1		
citronellol	3.6	25.0	12.3	ethyl 3-methylbutanoate	0.9	1.6	2.6		
myrcene	9.3	7.1	1.1	ethyl 4-pentanoate	0.6	0.3	0.7		
1-hexanol	27.9	33.4	31.6	2-methylpropyl butylate	13.1	4.5	13.1		
<i>cis</i> -3-hexenol	5.3	3.8	3.4	2-methylbutyl butylate	37	44	96		
				3-methylbutyl butylate	2.0	6.8	5.6		

Except for 3SH, 3SHA and 3SMB, 16 componeds were evaluated by sensory test.

Results of Hop and Beer Analysis

Table 3. Result of Typical Hop Analysis (µg/kg)

World Brewing Congress

August 13-17, 2016 Sheraton Downtown Denver Denver, CO 80202, U.S.A.

hop" varieties.

these thiols are very important for the characteristic aroma derived from these "flavor