

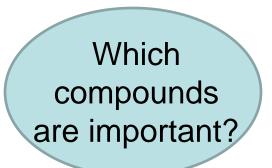
Key Aroma Compounds in 'Centennial', 'Citra' and 'Nelson Sauvin' Hop Identified by Aroma Extract Dilution Analysis Shi Feng, Yanping Qian and MICHAEL C. QIAN

Flavor Chemistry Research Laboratory

Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, OR 97331, U.S.A.

email: michael.qian@oregonstate.edu

A Word About Hop


- 84% vegetative matter
- 16% Lupulin glands:
 - soft resins ~13%
 - hard resins ~2%
 - essential oils ~0.5-3%
- Depending on variety, growing conditions/harvest time

Hop Oil Composition

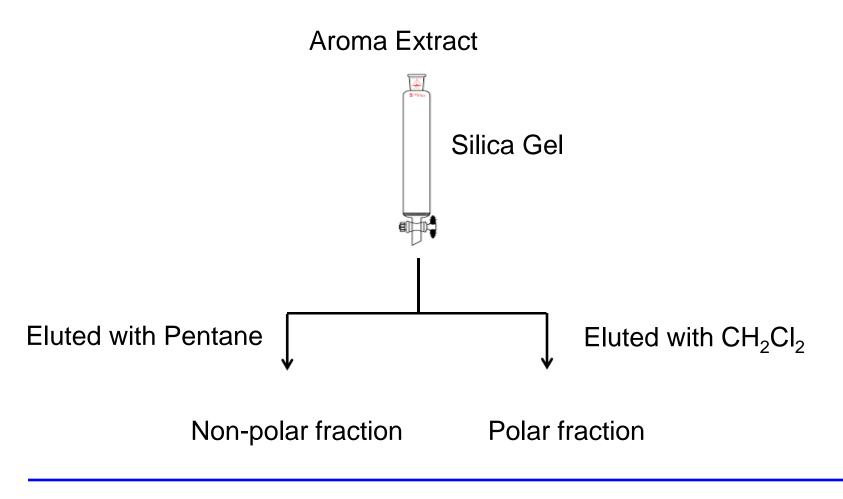
- Hydrocarbons and epoxides
 - Monoterpenes
 - Sesquiterpenes
 - Epoxides
- Terpene alcohols and esters
- Aldehydes, Ketones, fatty Acids, esters
 - Simple, well studied
- C₁₃-norisoprenoids
- Benzene derivatives
- Sulfur-containing compounds
 - Very complicated

Objectives

- Identify the most important aroma-active compounds in three different hops
 - Centennial
 - Citra
 - Nelson Sauvin

Gentle Volatile Isolation from Hops

- 30 g of dried hop cones were blended under liquid nitrogen.
- Volatiles were extracted with dichloromethane (3X)
- Solvent Assisted Flavor Evaporation (SAFE) was applied to the hop extract under high vacuum
- Distillates were concentrated to 1 mL with a Kuderna-Danish Concentrator



Aroma Identification Is Extremely Challenging

- Many compounds are co-eluted, what you can identify may not be what you smell
- Many compounds have smell but no MS signal
- Using multiple tools for confirmation
 - Mass spectra and retention index match with pure standards in lab
 - 2D GC-MS with heart-cut technique
 - Pre-fractionation and preparative GC
 - Personal experiences with aroma compounds

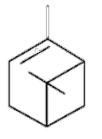
Normal Phase Chromatography Fractionation

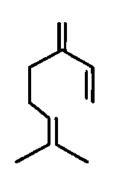
GC-MS/Olfactometry

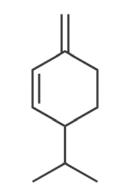
Gas Chromatography-Mass Spectrometry/Olfactometry **Oil Extract** diacetyl linalool **Sniffing port** α-pinene Chromatogram MS GC column 8

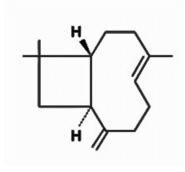
Aroma Extract Dilution Analysis (AEDA)

- The two fractions of hop oils were stepwise diluted with dichloromethane/pentane at 1:1 ratio and analyzed by GC–O.
- Flavor dilution (FD) factor of each odorant was calculated.




AEDA-Nonpolar Fraction


Nonpolar fraction (hydrocarbons) can be classified into two major groups: monoterpenes ($C_{10}H_{16}$) and sesquiterpenes ($C_{15}H_{24}$).


Nonpolar Fraction				
		FD-Factor		
RI Aroma Compounds	Descriptor	CE	CI	NS
1032 α-pinene	orange peel, pine	32	32	32
1152 myrcene	celery, balsamic	512	512	512
1177 β-phellandrene	mint, turpentine	8	4	4
1628 β-caryophyllene	woody	4	2	4

CE: Centennial, CI: Citra, NS: Nelson Sauvin

α-pinene

myrcene

β-phellandrene

 β -caryophyllene ¹⁰

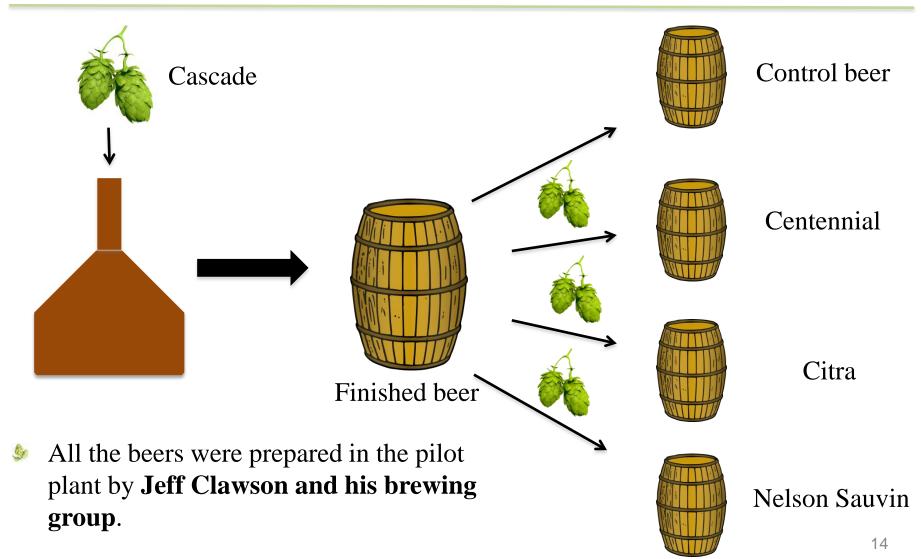
AEDA-Polar Fraction

Oxygenated components (alcohols, aldehydes, acids, esters, etc.) and sulfur-containing components (thioesters, miscellaneous sulphur compounds, etc.).

Polar Fraction					
			FD-Factor		
RI	Aroma Compounds	Descriptor	Centennial	Citra	Nelson Sa
987	diacetyl	cheesy, buttery	64	8	16
1130	2-methylbutyl acetate	fruity, nail polish	16	16	8
1173	unknown	pine, turpentine	32	64	64
1461	methional	potato, soy sauce	16	8	4
1550	linalool	floral	64	64	16
1609	methyl (Z)-4-decenoate	milky, green	16	16	4
1659	isovaleric acid	smelly, rancid	128	256	64
1701	(2E,4E)-nona-2,4-dienal	steamed grain, oily	16	64	16
1730	S-methylthiomethyl 2-methylbutanethioate*	garlic, preserved vegetable	16	32	8
1837	geraniol	citrus, lemon	256	128	128
1897	S-methylthiomethyl 4-methylpentanethioate*	garlic, fatty	16	16	16
1973	S-methyl methanethiosulfonate	radish, cabbage	128	64	16
2000	unknown	preserved vegetable	16	64	16
2546	vanillin	vanilla	64	64	64

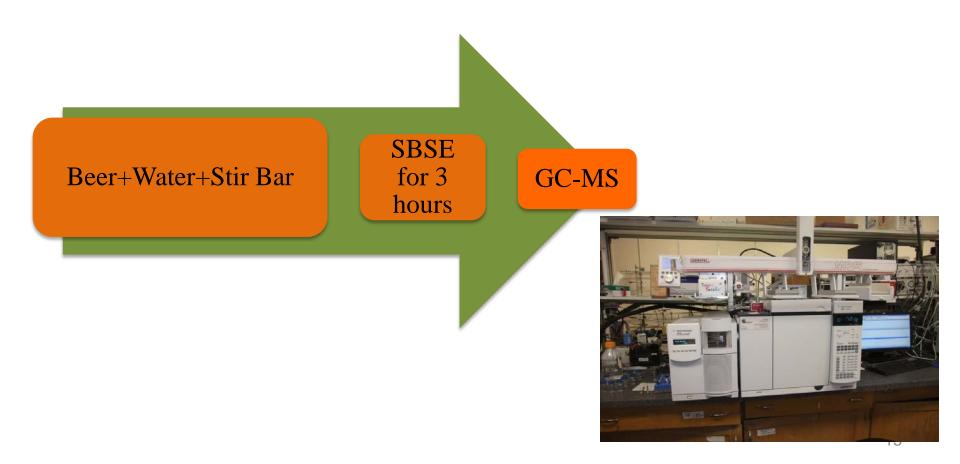
*Compounds were tentatively identified but have not confirmed by pure standards yet.

AEDA-Polar Fraction

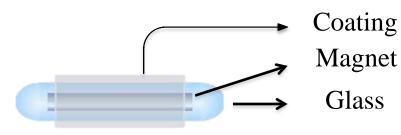

		Polar Fraction			
				FD-Factor	
RI	Aroma Compounds	Descriptor	Centennial	Citra	Nelson Sauvin
1101	hexanal	grassy	4	8	1
1181	isoamyl propionate	fruity	4	2	4
1195	2-methylbutyl isobutyrate	fruity, soda	2	<1	<1
1199	2-methyl-1-butanol	pear, fruity, sweet	8	4	8
1228	unknown	pine tree, almond	8	4	1
1271	methyl heptanoate	fruity, sweet	2	2	<1
1354	S-containing compounds	preserved vegetable	8	2	2
1380	methyl octanoate	citrus, soapy, fatty	8	8	4
1398	nonanal	citrus, floral	8	<1	4
1404	S-methylthiohexanoate	preserved vegetable, cabbage	8	8	2
1409	cis-3-hexenol	green, grassy	8	2	4
1433	acetic acid	vinegar, sour	2	2	2
1493	methyl nonanoate	floral, cooked rice	8	4	8
1547	isobutyric acid	cheese, rancid	8	8	<1
1704	geranial	citrus, soapy	4	<1	<1
1756	nerol	sweet, floral, citrus	8	<1	<1
1845	Unknown	fatty, nutty	8	16	1
1970	caryophyllene oxide	woody, incense	8	16	1
2041	octanoic acid	sweaty, rancid	16	8	2
2133	Unknown	ink, rancid	8	16	<1
2206	nonanoic acid	sweaty	2	4	8
2227	Unknown	rancid, cheese	<1	16	<1

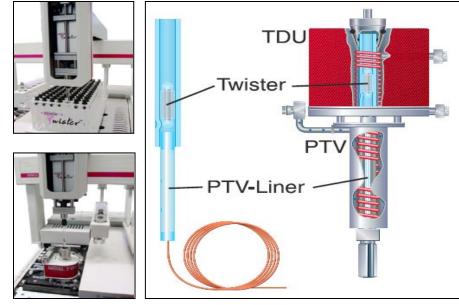
Odor Active Compounds in Three Hops

- In the nonpolar fractions, myrcene possessed the highest FD factor while α -pinene also stood out as an odor-active compound.
- In the polar fractions, geraniol and isovaleric acid were proved to have the highest FD values followed by S-containing compound, linalool and vanillin.
- S-methyl methanethiosulfonate was detected in the hops for the first time and showed high FD factor in Centennial and Citra hops, further work is needed to confirm this finding.
- Sulfur-containing compounds were identified to be important contributors to hop aroma profile, many needs to be further confirmed



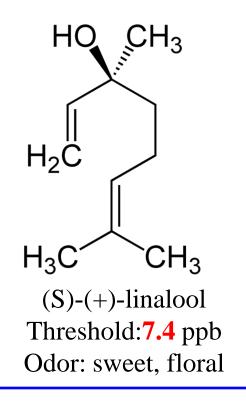
Dry-Hopped Beer

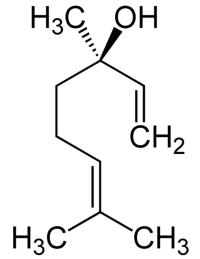

Complete Hop Profiling in Beer by Stir Bar Sorptive Extraction (SBSE)-GC-MS


MS

Stir Bar Sorptive Extraction (SBSE)-GC-

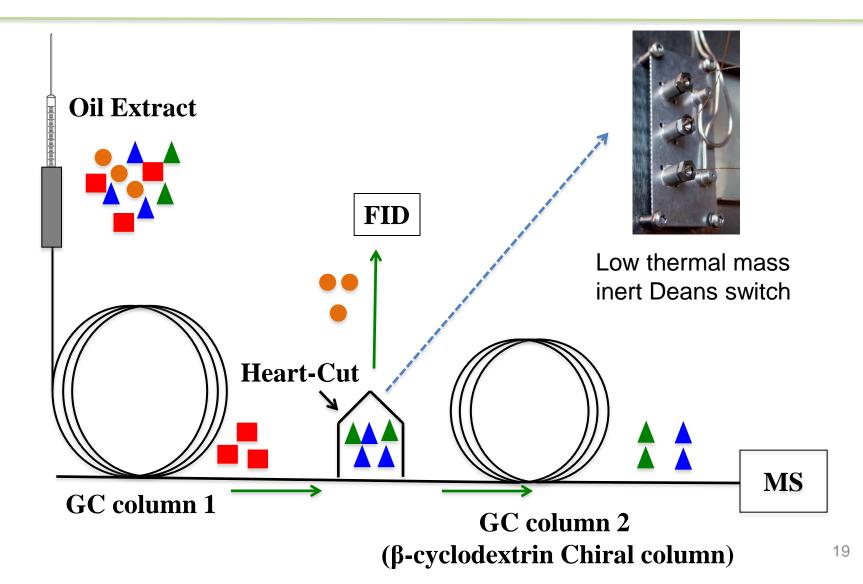
PDMS (Polydimethylsiloxane) Stir Bar

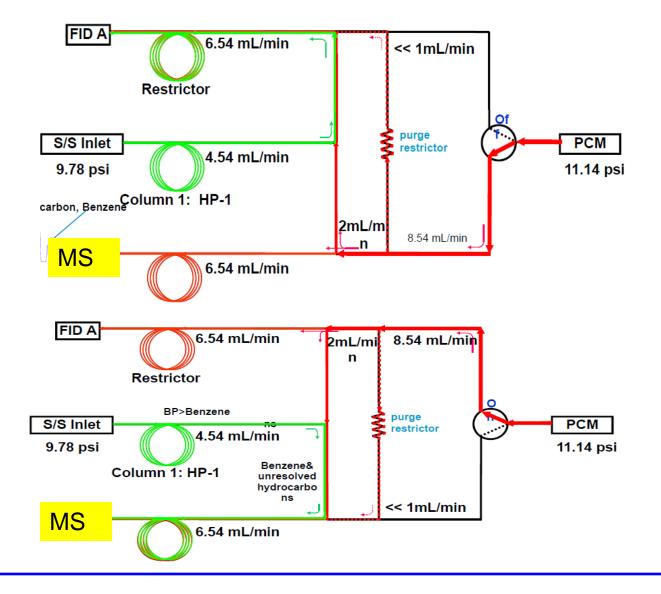

Hop Aroma in Beer


	_	Concentration (ppb)			
Target compound	Threshold(ppb)	Control	Centennial	Citra	Nelson Sauvin
α-pinene	2.5-62	<1	<1	<1	<1
β-pinene	140	<1	<1	<1	<1
myrcene	13	27.4 ± 1.9	48.2 ± 4.7	131 ± 3.5	110 ± 3.9
limonene	4-229	109 ± 7	56.9 ± 3.1	118 ± 13.8	105 ± 6.0
β-caryophyllene	64-90	<1	<1a	5.63 ± 0.5	<1
α-humulene	120	<1	1.07 ± 0.2	9.38 ± 0.6	8.61 ± 0.3
linalool	4-10	46.8 ± 0.7	78.4 ± 4.9	144 ± 2.7	70.2 ± 0.0
neral	28-120	<1	<1	<1	<1
geranial	n/a	<1	<1	<1	<1
geranyl acetate	9-460	<1	<1	<1	<1
nerol	680-2200	<1	11.71 ± 0.4	7.71 ± 0.2	<1
geraniol	4-75	40.0 ± 1.4	97.0 ± 0.9	86.4 ± 0.2	49.3 ± 1.9
caryophyllene oxide	n/a	9.3±0.5	12.5 ± 1.3	14.7 ± 0.5	8.0 ± 0.1

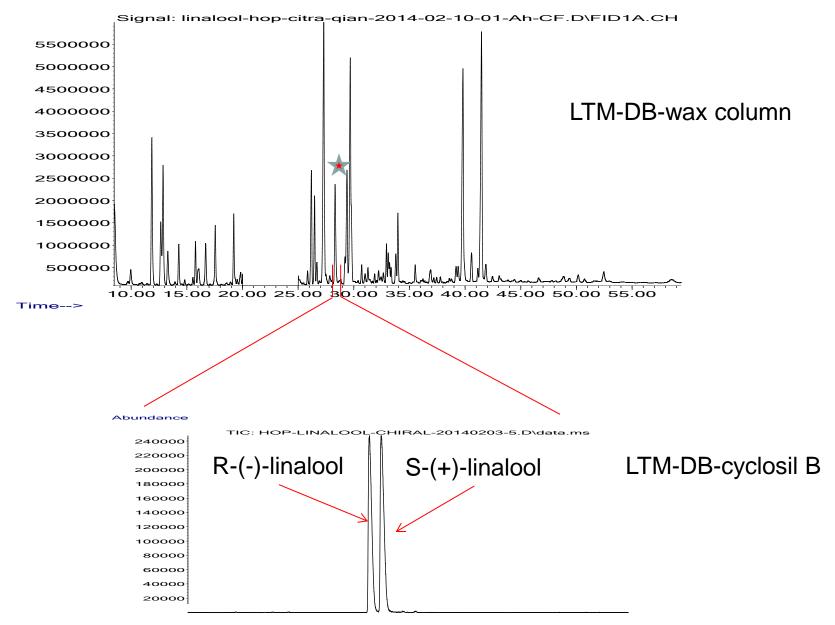
Linalool Enantiomer

Linalool occurs naturally as two isomeric forms. These two enantiomers have identical physical properties such as boiling point, melting point and spectroscopic features.

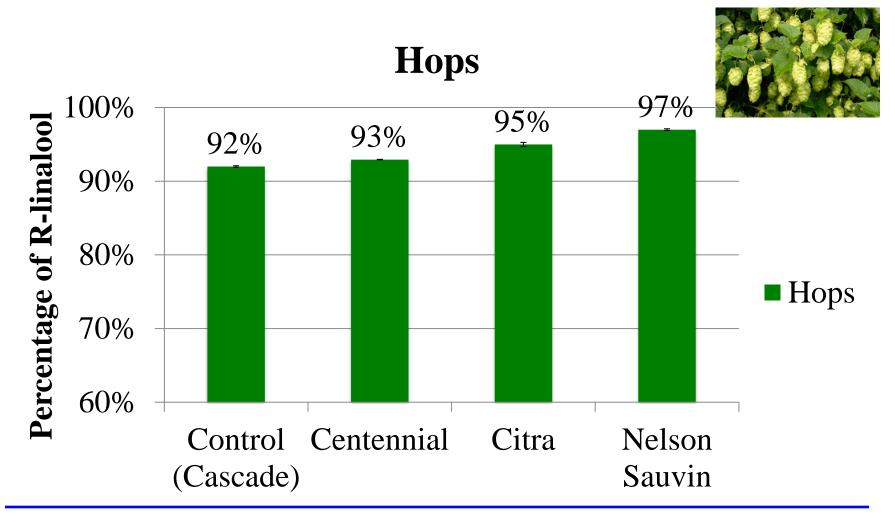




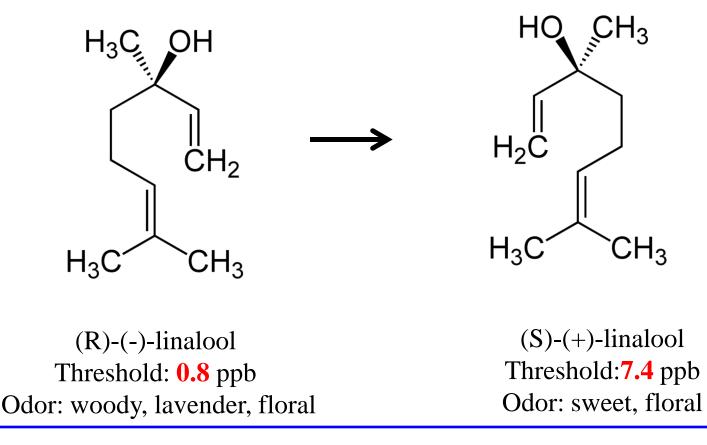
(R)-(-)-linalool Threshold: **0.8** ppb Odor: woody, lavender, floral

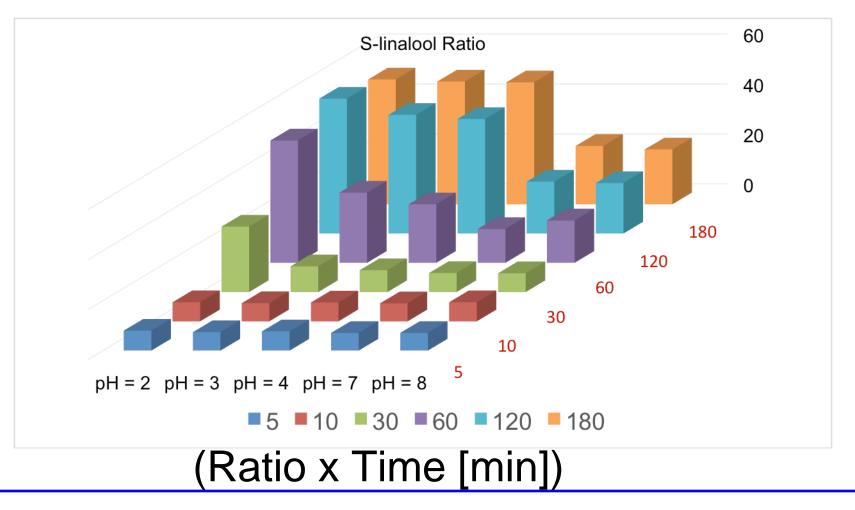


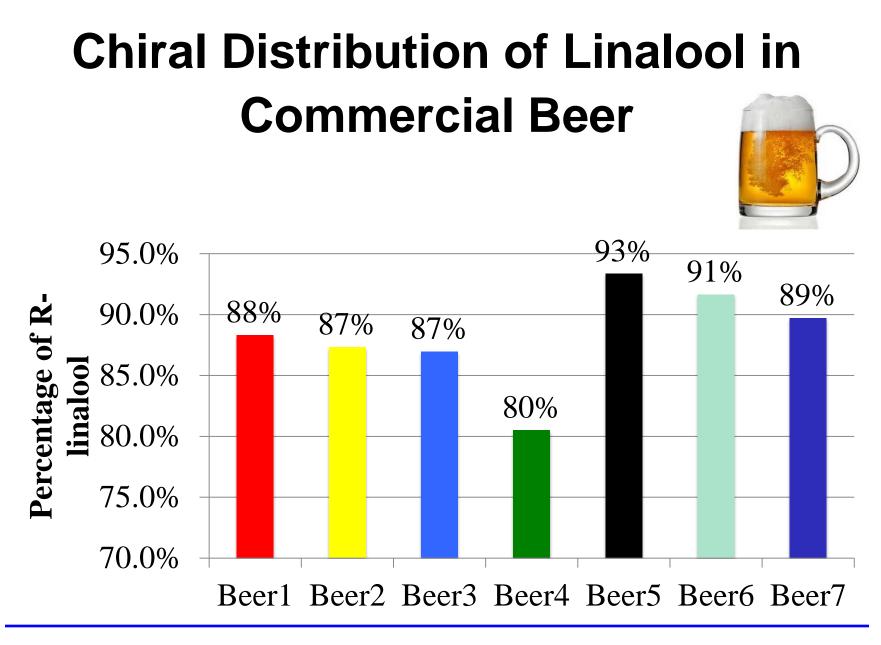
Two-Dimensional GC-MS



Abundance


Chiral Distribution of Linalool


Linalool Chiral Distribution in Hops


Hops	% R(-)-linalool	Hops	% R-(-) Linalool
Azacca	93.7 ± 0.1	Horizon	95.7 ± 0.1
Chinook	94.2 ± 0.4	Maridian	93.8 ± 0.01
Citra	94.1 ± 0.07	Mt. Hood	94.3 ± 0.1
Cluster	92.8 ± 0.4	N. Brewer	92.6 ± 0.1
Crystal	94.3 ± 0.2	Topaz	93.3 ± 0.1
Fuggle	94.2 ± 0.06	UK-Golding	94.8 ± 0.2
Galaxy	93.8 ± 0.2	Ultra	94.1 ± 0.3
Galena	94.1 ± 0.1	Warrior	94.2 ± 0.1
Glacier	94.8 ± 0.2	Willamette	94.7 ± 0.06

(R)-Linalool Conversion

Conversion to S-linalool at 100°C

Conclusion

- Hop aroma chemistry is very complicated and facinating
- Understanding hoppy aroma in beer is even more challenging
- Tremendous of challenges and opportunities