Beeromics: From QC to IDs of Differentially Expressed Compounds in Craft Beer

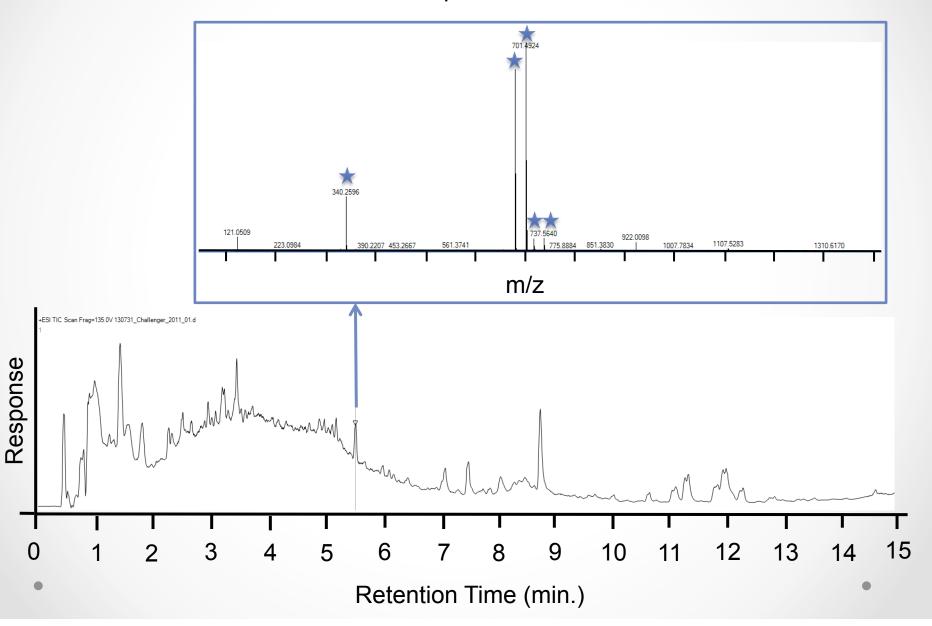
Christine A. Hughey
Jenny Phung, Chelsey M. McMinn
Department of Chemistry & Biochemistry, James
Madison University, Harrisonburg, VA 22807

LC/MS Undergraduate Research Center at JMU

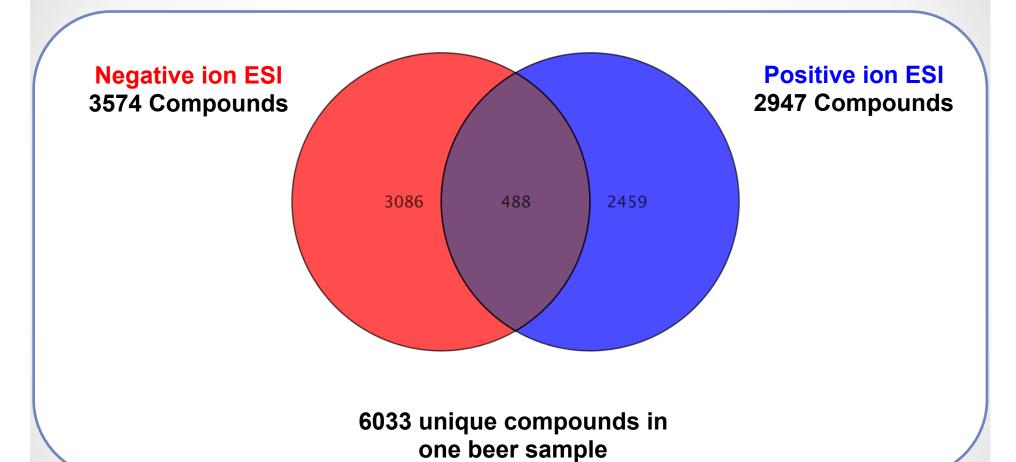
1290 UHPLC + 6224 TOF

NSF MRI, Sept 2009

1290 UHPLC + 6530 q-TOF


NSF MRI, January 2010

Beer-omics Objectives


- Utilize stringent quality controls in order to continuously monitor data quality
 - Six replicates of the QC beer were obtained on each data collection day to monitor retention time reproducibility, mass accuracy and instrument response
 - Normalized changes in instrument response with a spiked internal standard
 - Randomized samples
- Conduct differential analysis of beer samples (e.g., hop used, brewery, beer type, production batches)
- Demonstrate the challenge of identifying differentially expressed compounds
- Use beeromics to teach metabolomic techniques in Instrumental Analysis to undergraduates.

Fingerprinting by Molecular Features

Molecular feature = unique mass & retention time

QC Beer: Positive vs. Negative Ion ESI

Beer

Workflow

Sonicate, filter, aliquot into cryovials, freeze at -80 °C

Molecular fingerprinting w/ Agilent's Mass Profiler Professional software

1290 UHPLC + 6530 q-TOF

Randomized X3

Targeted Quantitation

Positive & negative ion ESI

Part 1: Quality Control Measures

How do you know that the differences observed are due to the samples and not variation in instrument performance?

QC Beer: Reproducibility

Raw Data

Daily Targeted Quantitation

			Negati	ve ESI	
		Interday	Interday	Interday	Intraday
		RT Std.	Mass Error	Abs. Area	Abs. Area
Target compound	Monoisotopic	dev. ^a	(ppm)	(% RSD)	(% RSD)
	Neutral Mass	(s)			
Catechin	290.0790	0.9	2.65	18.8%	4.1%
Rutin	610.1534	0.7	1.16	5.8%	2.6%
Quercetin-3-O-glucoside	464.0955	0.7	-0.11	9.3%	2.6%
Kaempferol-3-O-rutinoside	594.1584	8.0	1.40	7.7%	2.2%
Isorhamnetin-3-O-rutinoside	624.1690	0.7	7.71	26.0%	13.0%
Kampferol-3-O-glucoside	448.1006	8.0	1.50	10.3%	2.9%
Kaempferol	286.0477	1.0	2.22	14.4%	3.6%
Isorhamnetin-3-O-glucoside	478.1111				
Guanosine ^c	283.0917				
Naphthoic Acid (IS) ^d	172.0524	1.3	2.32	21.4%	4.4%
Caffeine (IS) ^d	194.0804			 /	/ / /
Avg.		0.9±0.2	2.36±2.33	14.2±7.2%	4.4±3.6%
QC sample ^e				10.5%	2.2±1.3%

^a Same column.

^b Column was changed during data collection.

^c Non-retained peak.

^d Internal standard (IS).

^eAverage summed response for MFs extracted from QC samples (n=54)

QC Beer: Reproducibility

Raw Data

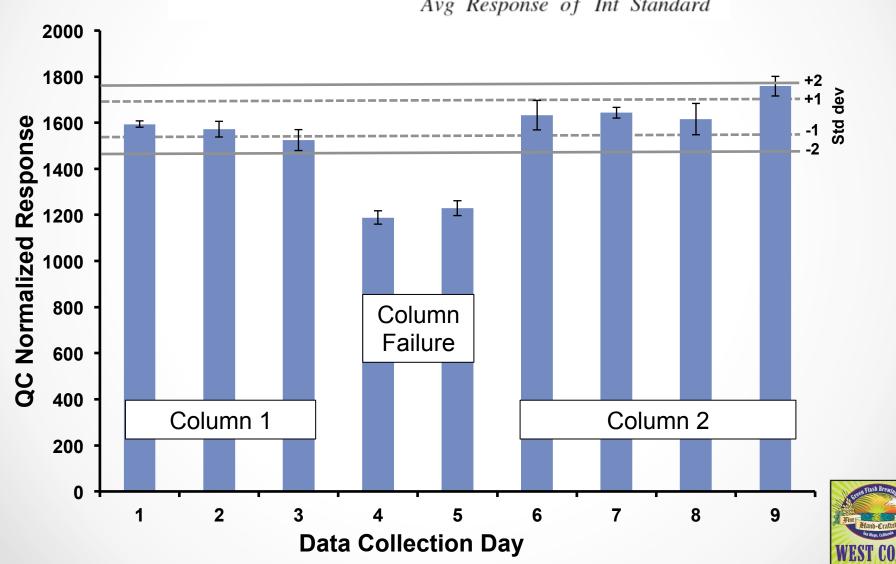
Daily Targeted Quantitation

			Positiv	ve ESI	
		Interday	Interday	Interday	Intraday
		RT Std.	Mass Error	Abs. Area	Abs. Area
Target compound	Monoisotopic	dev. ^b	(ppm)	(% RSD)	(% RSD)
	Neutral Mass	(s)	,	,	
Catechin	290.0790	3.6	-2.93	8.6%	1.8%
Rutin	610.1534				
Quercetin-3-O-glucoside	464.0955	2.6	0.36	6.0%	2.6%
Kaempferol-3-O-rutinoside	594.1584	2.2	0.13	7.5%	1.9%
Isorhamnetin-3-O-rutinoside	624.1690				
Kampferol-3-O-glucoside	448.1006				_ _
Kaempferol	286.0477				
Isorhamnetin-3-O-glucoside	478.1111	2.6	-1.33	9.3%	4.1%
Guanosine ^c	283.0917	0.9	-1.01	28.4%	11.6%
Naphthoic Acid (IS) ^d	172.0524			/	//
Caffeine (IS) ^d	194.0804	2.3	-8.21	10.0%	1.3%
Avg.		2.4±0.9	-2.17±3.16	11.7±8.3	3.9±3.8%
QC sample ^e				8.0%	2.2±2.1%

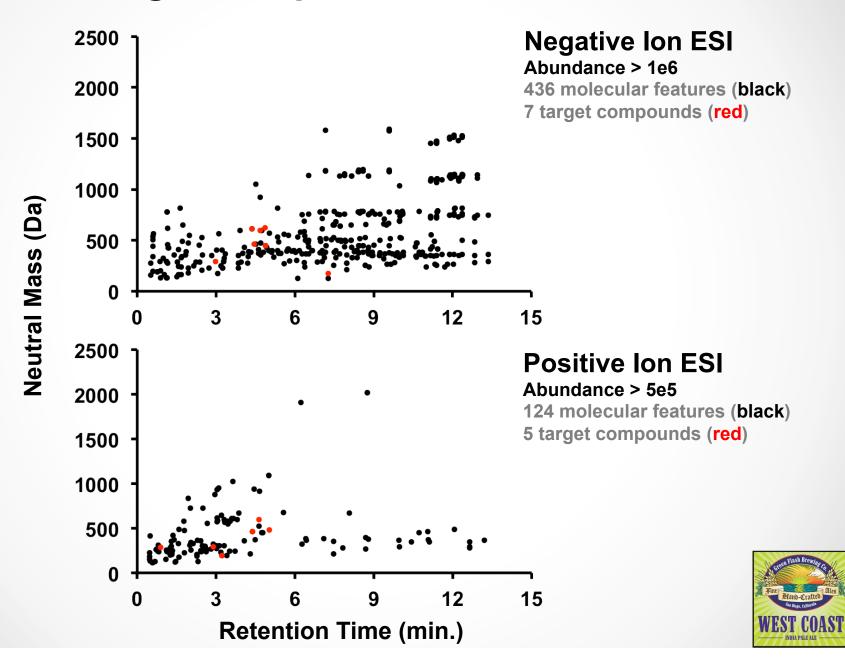
^a Same column.

^b Column was changed during data collection.

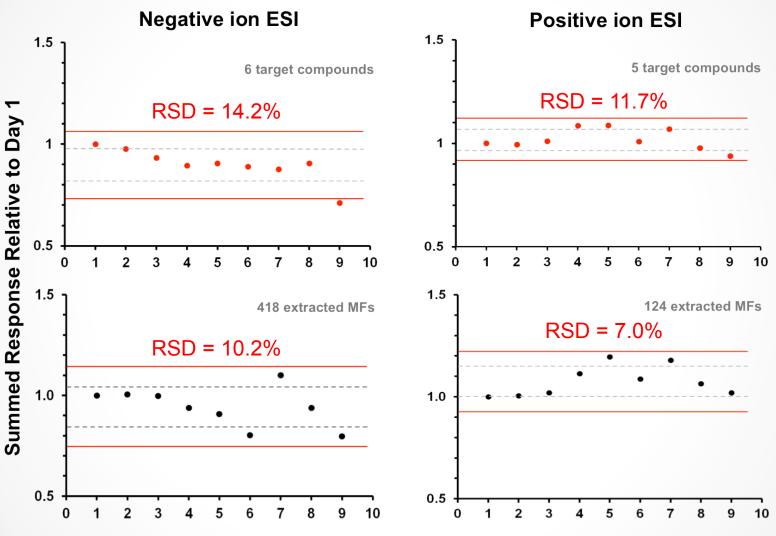
^c Non-retained peak.


d Internal standard (IS).

^eAverage summed response for MFs extracted from QC samples (n=54)


QC Beer: Reproducibility

Collected over 1.5 weeks


Normalized Response =
$$\frac{Summed Response of Standards}{Avg Response of Int Standard}$$

Target Compounds vs. QC Beer

Target Compounds vs. QC Beer

Data Collection Day

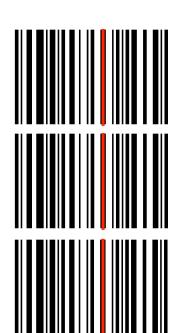
± 2 standard deviations from mean ± 1 standard deviations from mean

Data Analysis

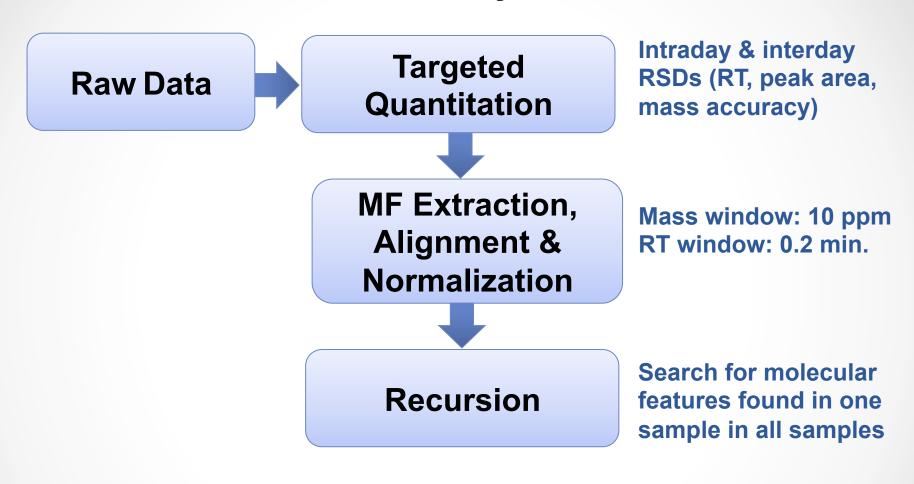
Raw Data

Targeted Quantitation

Intraday & interday RSDs (RT, peak area, mass accuracy)


MF Extraction, Alignment & Normalization

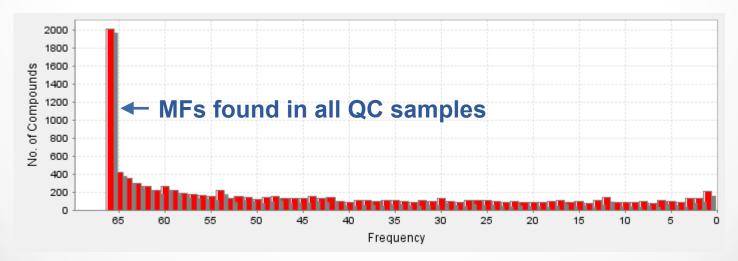
Mass window: 10 ppm RT window: 0.2 min.


Sample 1

Sample 2

Sample 3

Data Analysis


QC Beer: Recursion

Negative ion ESI

Before Recursion:

After Recursion:

Part 2: Untargeted Differential Analysis

Identical malts and yeast was used in all the Mikkeller beers.

Malt: 67% Pilsner, 11% Cara-Crystal, 11% Munich II, 11% Flaked Oats

Yeast: American Ale (Wyeast 1056/WLP099)

6.9% ABV ~100 IBUs

--Reported by Mikkel (the brewer) on the Beer Brewing Network.com

Mikkeller's Single Hop India Pale Ales (IPAs)

24 Single Hop Beers
3 hops were used in two separate runs (2010 & 2011)
1 Quality Control = Green Flash West Coast IPA

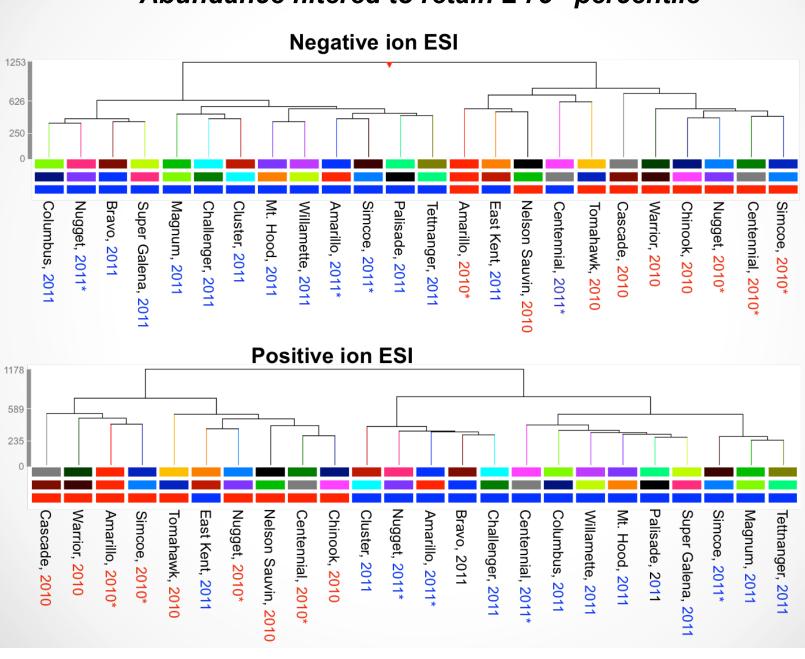
2010

- Amarillo
- Cascade
- Centennial
- Chinook
- Nelson Sauvin
- Nugget
- Simcoe
- Tomahawk
- Warrior

2011

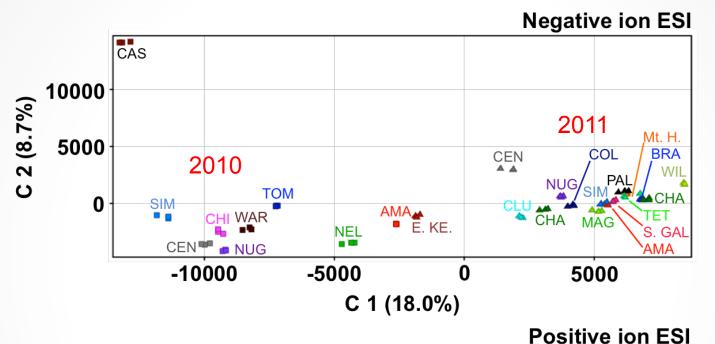
- Amarillo
- Bravo
- Centennial
- Challenger
- Cluster
- Columbus
- East Kent
- Magnum

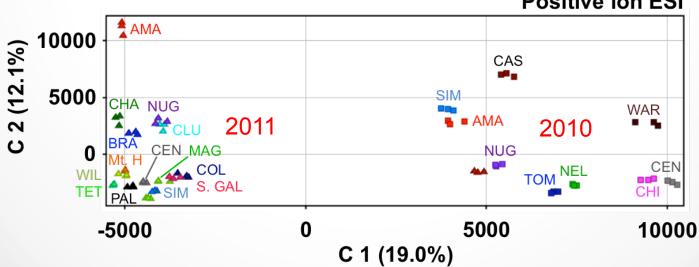
2011


- Mt. Hood
- Nugget
- Palisade
- Simcoe
- Super Galena
- Tettnanger
- Willamette

Fold changes (FC) observed for 2010 vs. 2011 Mikkeller beers with a moderated t-test using Benjamini-Hochberg multiple testing correction.

	Neg	gative ion	ESI	Positive ion ESI				
	All	P < 0.05	P < 0.01	All	P < 0.05	P < 0.01		
FC All	4415	2666	1936	3452	2002	1529		
FC > 1.1	4291	2666	1936	3253	2002	1529		
FC > 1.5	3926	2586	1909	2908	1943	1507		
FC > 2.0	3542	2466	1801	2647	1845	1418		
FC > 3.0	3119	2359	1719	2291	1764	1349		
By chance		133	19		100	15		

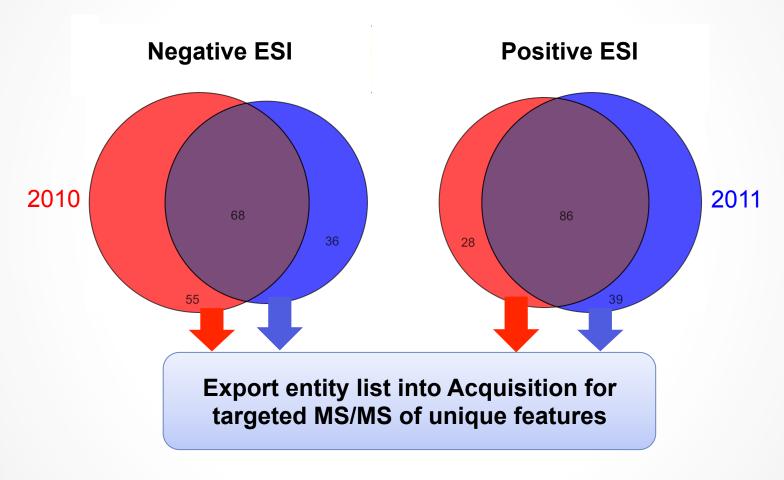



Abundance filtered to retain ≥ 75th percentile

Abundance filtered to retain ≥ 75th percentile

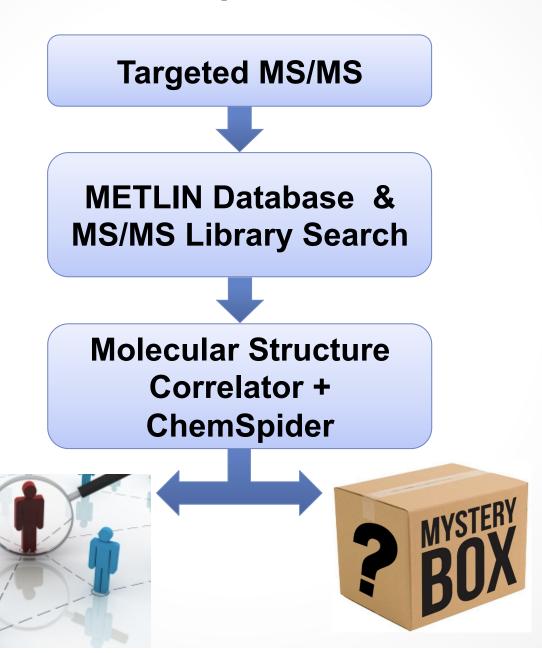
Abundance filtered to retain ≥ 75th percentile

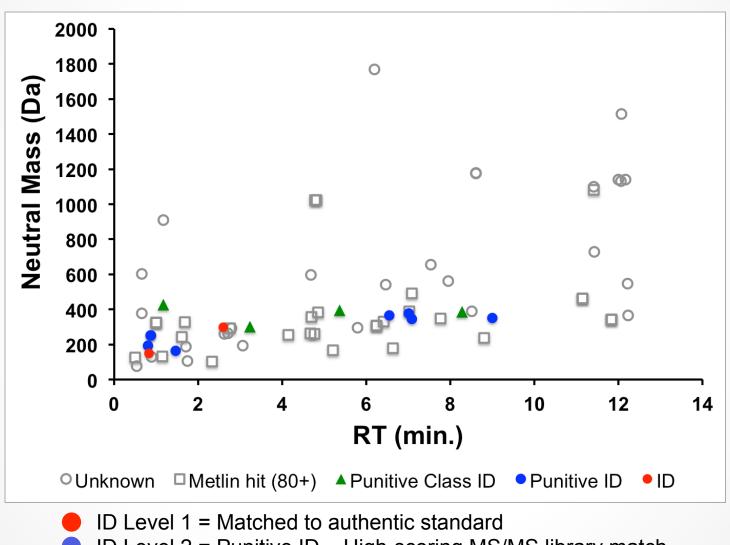
Tukey HSD post hoc test results for 2011 Mikkeller beers analyzed in negative ion mode (p<0.05). Gray shaded boxes indicate the number (and %) of differentially expressed molecular features. White boxes correspond to the number (and %) of features common to each pair. Retained features (2400) exhibited an abundance >75th percentile and passed ANOVA filtering (p<0.05).


	COL	MAG	WIL	TET	S. GAL	CLU	PAL	Mt. H	СНА	CEN	BRA	SIM	E. KE	AMA	NUG
COL	2400	609	1099	991	710	741	828	638	733	1182	895	695	1015	658	301
	(100%)	(25%)	(46%)	(41%)	(30%)	(31%)	(35%)	(27%)	(31%)	(49%)	(37%)	(29%)	(42%)	(27%)	(13%)
MAG	1791	2400	1221	924	888	787	893	901	800	1178	1058	803	923	700	727
	(75%)	(100%)	(51%)	(39%)	(37%)	(33%)	(37%)	(38%)	(33%)	(49%)	(44%)	(33%)	(38%)	(29%)	(30%)
WIL	1301	1179	2400	1079	874	1177	950	935	956	1338	689	1063	1264	1105	1054
	(54%)	(49%)	(100%)	(45%)	(36%)	(49%)	(40%)	(39%)	(40%)	(56%)	(29%)	(44%)	(53%)	(46%)	(44%)
TET	1409 (59%)	1476 (62%)	1321 (55%)	2400 (100%)	1022 (43%)	987 (41%)	890 (37%)	869 (36%)	857 (36%)	1082 (45%)	1106 (46%)	922 (38%)	1188 (50%)	860 (36%)	1009 (42%)
S. GAL	1690 (70%)	1512 (63%)	1526 (64%)	1378 (57%)	2400 (100%)	959 (40%)	685 (29%)	892 (37%)	733 (31%)	1250 (52%)	644 (27%)	816 (34%)	1118 (47%)	907 (38%)	681 (28%)
CLU	1659	1613	1223	1413	1441	2400	1147	805	868	1253	1061	1065	1130	903	792
	(69%)	(67%)	(51%)	(59%)	(60%)	(100%)	(48%)	(34%)	(36%)	(52%)	(44%)	(44%)	(47%)	(38%)	(33%)
PAL	1572	1507	1450	1510	1715	1253	2400	661	591	1160	999	601	1028	766	758
	(66%)	(63%)	(60%)	(63%)	(71%)	(52%)	(100%)	(28%)	(25%)	(48%)	(42%)	(25%)	(43%)	(32%)	(32%)
MT. H	1762	1499	1465	1531	1508	1595	1739	2400	597	1206	1113	759	1077	691	631
	(73%)	(62%)	(61%)	(64%)	(63%)	(66%)	(72%)	(100%)	(25%)	(50%)	(46%)	(32%)	(45%)	(29%)	(26%)
СНА	1667	1600	1444	1543	1667	1532	1809	1803	2400	1210	863	566	921	678	699
	(69%)	(67%)	(60%)	(64%)	(69%)	(64%)	(75%)	(75%)	(100%)	(50%)	(36%)	(24%)	(38%)	(28%)	(29%)
CEN	1218	1222	1062	1318	1150	1147	1240	1194	1190	2400	1301	1186	1391	1180	1160
	(51%)	(51%)	(44%)	(55%)	(48%)	(48%)	(52%)	(50%)	(50%)	(100%)	(54%)	(49%)	(58%)	(49%)	(48%)
BRA	1505	1342	1711	1294	1756	1339	1401	1287	1537	1099	2400	989	1161	1011	945
	(63%)	(56%)	(71%)	(54%)	(73%)	(56%)	(58%)	(54%)	(64%)	(46%)	(100%)	(41%)	(48%)	(42%)	(39%)
SIM	1705	1597	1337	1478	1584	1335	1799	1641	1834	1214	1411	2400	1005	591	682
	(71%)	(67%)	(56%)	(62%)	(66%)	(56%)	(75%)	(68%)	(76%)	(51%)	(59%)	(100%)	(42%)	(25%)	(28%)
E. KE	1385	1477	1136	1212	1282	1270	1372	1323	1476	1009	1239	1395	2400	958	1022
	(58%)	(62%)	(47%)	(51%)	(53%)	(53%)	(57%)	(55%)	(62%)	(42%)	(52%)	(58%)	(100%)	(40%)	(43%)
AMA	1742	1700	1295	1540	1493	1497	1634	1709	1722	1220	1389	1809	1442	2400	634
	(73%)	(71%)	(54%)	(64%)	(62%)	(62%)	(68%)	(71%)	(72%)	(51%)	(58%)	(75%)	(60%)	(100%)	(26%)
NUG	2099 ¹ (87%)	1673 (70%)	1346 (56%)	1391 (58%)	1719 (72%)	1608 (67%)	1642 (68%)	1769 (74%)	1701 (71%)	1240 (52%)	1455 (61%)	1718 (72%)	1378 (57%)	1766 (74%)	2400 (100%)

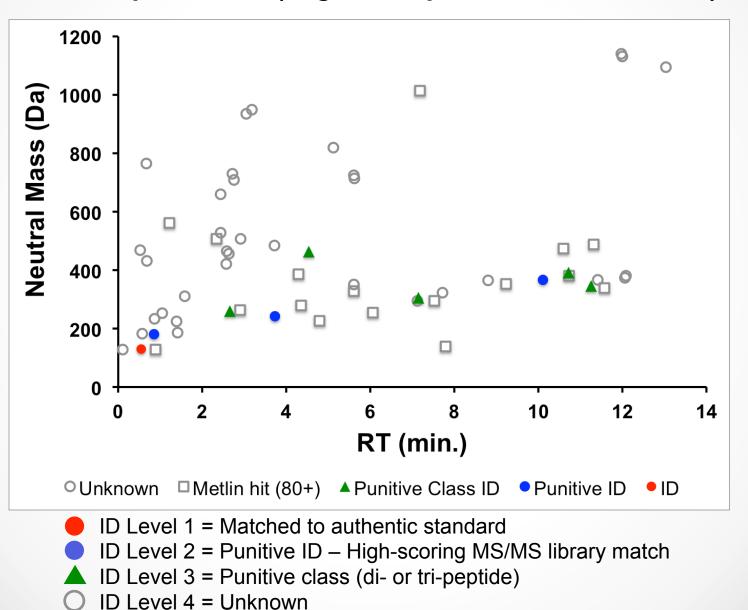
¹Nugget and Columbus share the most features in common (87%) - purple

²East Kent and Centennial have the least features in common (42%) - blue


Abundance filtered to retain ≥ 75th percentile



Part 3: ID of Unique Molecular Features



MFs unique to 2010 (negative & positive ESI combined)

- ID Level 2 = Punitive ID High-scoring MS/MS library match
- ▲ ID Level 3 = Punitive class (di- or tri-peptide)
- ID Level 4 = Unknown

MFs unique to 2011 (negative & positive ESI combined)

MFs unique to 2010 (negative & positive ESI combined)

	ID	RT	Neutral			DB	Library	MS	SC SC	# Metlin
Punative ID	level	(min.)	mass (Da)	Polarity	Year	Score	Score	Score	% Wt	DB hits
citric acid	2	0.802	192.0257	neg	2010	92.4	61.9	91.7	94.3	12
methionine	1	0.826	149.0497	pos	2010	89.1	62.3	73.8	87.0	3
5'-deoxyadenosine	4 ^a	0.864	251.1021	pos	2010	55.2	100	72.9	86.5	5
phenyalanine	4 ^a	1.462	165.0776	pos	2010	85.1	98.8	73.5	90.8	19
5-methylthioadenosine	1	2.590	297.0881	pos	2010	90.5	98.2	84.2	90.4	1
20-carboxy-LTB4	2	6.546	366.2037	neg	2010	98.5	90.9	28.8	39.6	14
(iso)humulinone	2	7.007	378.2038	neg	2010	97.0	NA	88.9	98.6	23
(-)-11-nor-caroxy-9-THC	4 ^a	7.079	344.1972	pos	2010	71.8	88.1	80.4	91.1	18
cohumulone	4 ^a	7.765	348.1930	pos	2010	83.2	NA	74.5	91.7	23
19(R)-hydroxy-PGB2	2	8.992	350.2093	neg	2010	94.1	83.6	52.2	60.2	34
humulinic acid	2	9.509	266.1513	neg	2010	98.7	NA	82.4	97.1	28
agmatine	1	0.550	130.1212	pos	2011	84.8	NA	89.6	91.7	1
tyrosine	4 ^a	0.854	181.0722	pos	2011	86.6	94.7	77.0	98.1	3
20-carboxy-LTB4	2	10.111	366.2043	neg	2011	99.5	86.7	7.86	10.3	13
4-deoxyhumulone	2	11.259	346.2137	neg	2011	82.44	NA	71.2	87.3	31

^aRT did not match authentic standard. ID level of "2" would have been assigned if standard had not been compared.

ID Level 1 = Matched to authentic standard

ID Level 2 = Punitive ID – High-scoring MS/MS library match

ID Level 3 = Punitive class (di- or tri-peptide)

ID Level 4 = Unknown

Proposed minimum reporting standards for chemical analysis. *Metabolomics*. **2007**, 3, 211-221. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage. **2012**, *135*, 1284-1289.

Conclusions

- Utilized stringent quality controls in order to continuously monitor data quality
 - QC standard was used to determine the interday RSDs and determine that differences observed in the samples were due to the samples themselves and not instrument response
 - Randomization of data sets further insures trends observed are real
- Conducted differential analysis of beer samples
 - Observed differences due to year of production
 - Beers were compositionally similar so rigorous QC was needed to identify statistically significant differences
- Positive identification of unique features is hard even with MS/MS and powerful metabolomic tools.

Acknowledgements

Agilent Technologies: Nathan Miller Mike Scott

Andy Gieschen

Rick Reisdorph (MPP Training)

Steve Fischer

Funding:

NSF CHE-1046630

NSF CHE-0958973

NSF REU-1062629

Research Corp. Department Development

Grant 7957

