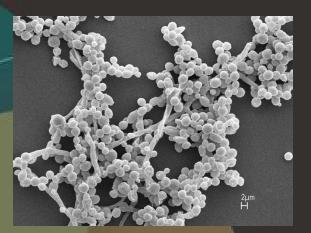


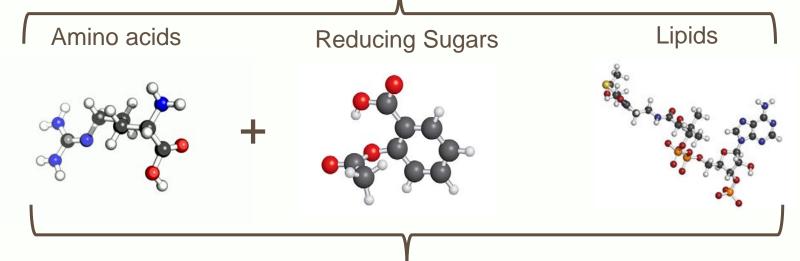
Barley Contributions to Beer Flavor

Dustin Herb
Oregon State University

American Society of Brewing Chemists – Malt and Grain Symposium June 15th, 2015


MALT

H , 0


HOPS

YEAST

Maillard Reaction (Heat + Time) Oxidation & degradation (Heat + Time)

Barley

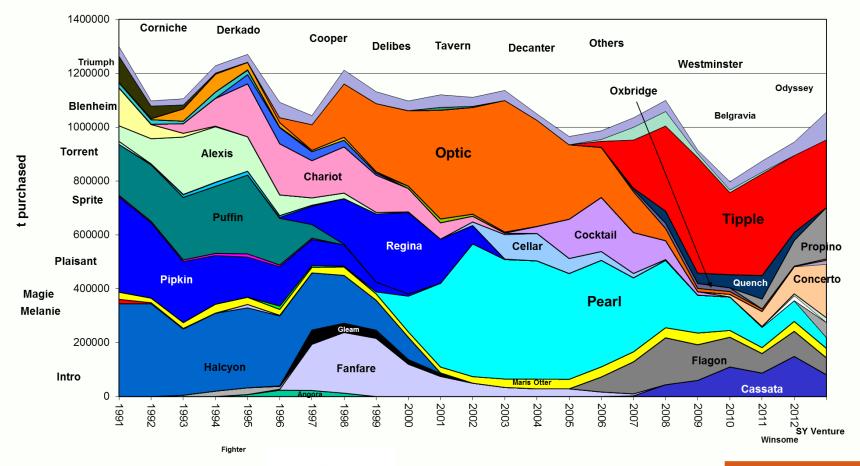
Barley: genetic & environmental factors

All traits show GxE interactions, but depending on the trait there may be a larger G or E effect. These effects are shown below:

Amino Acids

- Protein content (genetic/environment)
- Protein composition (genetic)
 - Specific amino acid
- Dormancy (genetic)
- Germination Energy (genetic)
- Amylase & Protease (genetic)

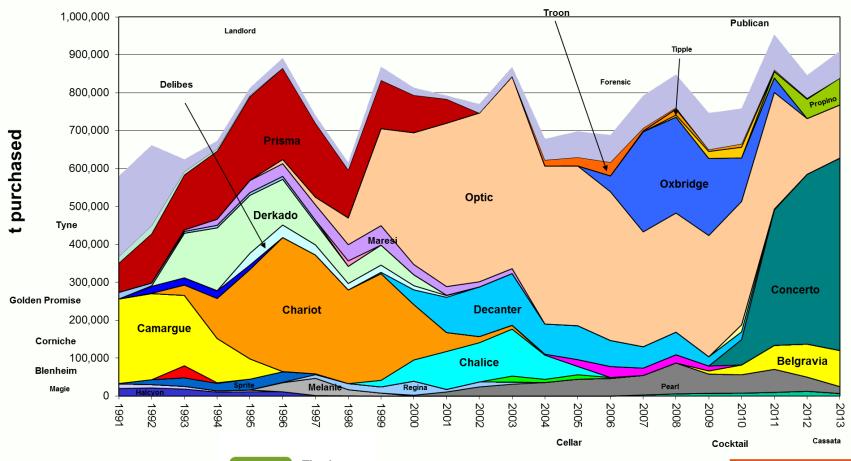
Reducing Sugars


- Starch content (genetic/environment)
- Starch composition (genetic)
 - Amylose: Amylopectin ratio
 - Sucrose, glucose, fructose
- Diastatic power (genetic)

Lipids

- Lipid content (genetic/environment)
- Lipid composition (genetic)

English Malting Barley Purchases

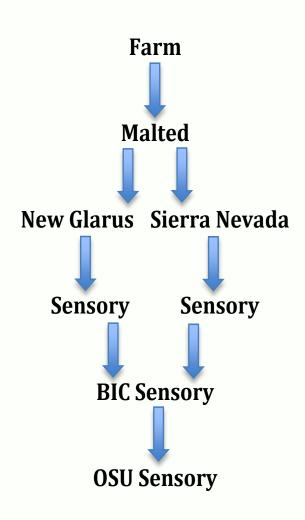


Scottish Malting Barley Purchases

Objectives

- Determine if barley variety is a significant contributor to beer flavor. If variety is significant, determine
 - factors that influence the barley contributions to beer flavor.

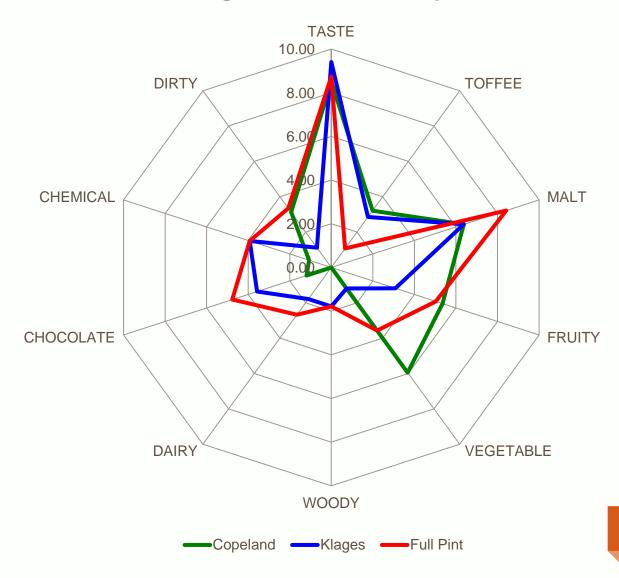
• if selection pressures in modern breeding programs have indirectly selected against barley flavor.



Are there flavor differences between varieties?

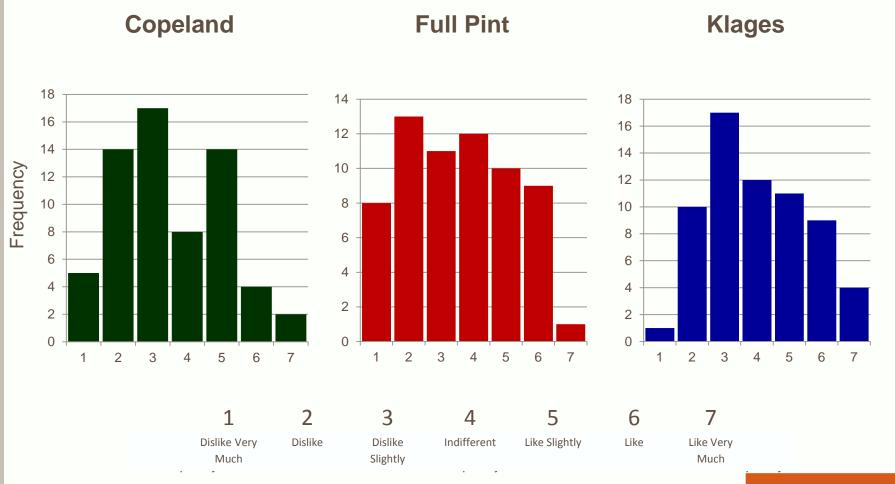
Phase I: 3x - Varietal flavor differences

- Three varieties
 - Full Pint; Klages; CDC Copeland
 - 40 meters strips
 - Grown in replication
 - Harvest 2014 in Lebanon, OR
- Malted at the Canadian Malting Barley Technical Center (CMBTC)
- Brewed at New Glarus Brewing Co. and Sierra Nevada Brewing Co.
- Beer sensory at NGBC, SNBC, Barley Improvement Conference, Oregon State University, and Corvallis Brewing Supply



Difference Analysis: triangle test at Oregon State University

Stella/Highlife	NG:	NG:	NG:	SN:	SN:	SN:
Control	FP/KG	CP/KG	FP/CP	FP/CP	KG/FP	KG/CP
45/50	23/50	24/50	19/50	28/50	19/50	23/50
P=0.000	P=0.0379	P=0.0196	P=0.2703	P=0.0007	P=0.2703	P=0.0379
Different	Different	Different	Not Different	Different	Not Different	Different
	B-damascence	Cheesy		Chocolate		Astringent
Comments from assessors who correctly identified odd sample in triangle test	Diacetyl	Pungent		Diacetyl		DMS
	Bananas	Diacetyl		DMS		Diacetyl
	Lightstruck	Subtle		Less aroma		Mouthfeel
	Toasted	Toasted Coffee		Malty		Less aroma
				Sweaty		Malty
						Weak



Descriptive Analysis: Combined free-choice profiling from the Barley Improvement Conference, Oregon State University, and Corvallis Brew Supply

Oregon State

Consumer Analysis: Combined preference rating of CDC Copeland, Full Pint, and Klages from Barley Improvement Conference and Corvallis Brew Supply

12

July 8, 2015

Malt Quality

Variety	Friab. (%)	Ext. (%)	S/T Ratio	β-glucans (ppm)	DP (°L)	Color	FAN (mg/L)
Full Pint	52.5	78.5	38.2	397	155	1.7	177
Klages	74	80.2	44.3	385	118	1.78	198
CDC Copeland	89.8	81.8	47.8	103	125	1.75	198

Phase I: 3x - Results

• 4 / 6 beer samples were significantly different

- 2 NGBC (FP/KG & CP/KG)
- 2 SNBC (FP/<u>CP</u> & KG/<u>CP</u>)
- Moderate diacetyl detected in samples

Flavor ranking

- Klages = highest = Basic taste
- Full Pint = highest = Malty, Chocolate
- CDC Copeland = highest = Vegetable, Fruity

Variety preference

- Klages had the highest preference rating
- CDC Copeland and Full Pint similar

What factors influence barley contributions to beer flavor?

Phase II: 3x3 – Influences on barley beer flavor

- 3 varieties:
 - Full Pint; Klages; AC Metcalfe
- 3 locations:
 - Corvallis, OR
 - St. Paul, MN
 - Saskatoon, CA
- Malted at Rahr

Wort analytics (GC-MS & GC-O) at Sierra Nevada Brewing Co.

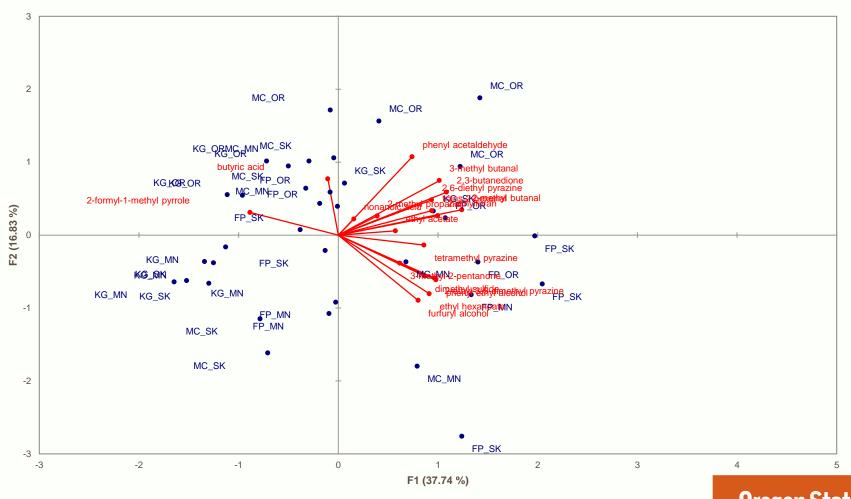
Wort sensory at Sierra Nevada Brewing Co.

Phase II: 3x3 – Aroma Compound Results

ANOVA:

- **37 / 51** aroma compounds measured had significant effects
 - Variety; environment; G x E
- 11 / 51 aroma compounds had significant variety and environment effects
- 6 / 51 aroma compounds had significant variety x environment interactions

LSMeans Student's t-test:


- Variety effects:
 - 24 / 33 highest in Full Pint
 - 8 / 33 highest in AC Metcalfe
 - 1 / 33 highest in Klages
- Environment effects:
 - 13 / 16 highest in Oregon, USA
 - 3 / 16 highest in Minnesota, USA
 - 0 / 16 highest in Saskatchewan, CA

Aroma Compound	Odor Type	Geno	Enviro	GxE	Run	Variety	Environment
2,3-butanedione	Buttery	Х	Х	Х		FP,MC,KG	OR,SK,MN
2-ethyl-3,5-dimethyl pyrazine	Nutty	Х	Х			FP,MC,KG	MN,SK,OR
furan	Ethereal	Х	X			FP,MC,KG	OR,SK,MN
trans-2-hexenal	Green	Х	Χ			MC,FP,KG	OR,SK,MN
phenylacetaldehyde	Green	Х	XX			MC,FP,KG	OR,SK,MN
2-formyl-1-methyl pyrrole	Roasted	Х				KG,FP,MC	MN,OR,SK
2-methylfuran	Chocolate	х				MC,FP,KG	SK,MN,OR
4-vinyl phenol	Phenolic	х				MC,FP,KG	MN,OR,SK
dimethyl styrene	Phenolic	х				FP,MC,KG	OR,SK,MN
ethyl decanoate	Waxy	х				FP,MC,KG	MN,SK,OR
ethyl dodecanoate	Waxy	х				FP,MC,KG	MN,SK,OR
ethyl hexanoate	Fruity	х				FP,MC,KG	MN,SK,OR
ethyl octanoate	Waxy	х				FP,MC,KG	MN,OR,SK
furfural	Bready	x				FP,MC,KG	SK,OR,MN
methyl mercaptan	Sulferous	х				FP,MC,KG	SK,OR,MN
propanal	Ethereal	х				FP,MC,KG	MN,SK,OR
tetramethyl pyrazine	Nutty	x		X		FP,MC,KG	MN,OR,SK
2-ethylfuran	Chemical	xx	Х	,		FP, MC, KG	OR,SK,MN
2-methyl butanal	Chocolate	XX	X			FP, MC,KG	OR,SK,MN
2-methylpropanal	Spicy	XX	X			MC,KG,FP	MN,OR,SK
ethyl acetate		XX	X	XX		FP,KG,MC	OR,SK,MN
propanol	Ethereal	XX	X	^^		FP, MC, KG	OR,SK,MN
3-methyl butanal	Alcoholic Aldehydic	XX	XX			FP, MC, KG FP,MC,KG	OR,SK,MN
furfuryl alcohol	Bready	XX	XX			FP,MC,KG	MN,SK,OR
2,6-diethyl pyrazine		XX	^^	XX		MC,FP.KG	OR,SK,MN
3-methyl-2-pentanone	Nutty	XX		^^		FP,MC,KG	MN,SK,OR
butyric acid	Peppermint	XX				MC,KG,FP	MN,OR,SK
dimethyl disulfide	Cheesy	XX				FP,MC,KG	
dimethyl sulfide	Sulferous	XX					MN,SK,OR
dmts	Sulferous	xx				FP,MC,KG	MN,SK,OR
nonanoic acid	Alliacious	XX		XX		FP,MC,KG	SK,OR,MN
octanoic acid	Waxy	XX		XX		FP,KG,MC	OR,SK,MN
	Fatty	XX				FP,MC,KG	OR,SK,MN
phenyl ethyl alcohol	Floral	XX				MC,FP,KG	MN,SK,OR
4-methyl-2-pentanone	Green		X	Χ		MC,KG,FP	OR,MN,SK
hexanal	Green		X			MC,KG,FP	OR,SK,MN
2-acetyl furan	Balsamic		XX			KG,MC,FP	OR,SK,MN
hexanoic acid	Fatty		XX			KG,MC,FP	OR,SK,MN
2,5-dimethyl furan	Meaty				X	MC,KG,FP	OR,SK,MN
2-methyl-1,3-butanedione	Buttery					KG,FP,MC	OR,MN,SK
2-vinyl furan	Phenolic					MC,FP,KG	MN,OR,SK
acetic acid	Acidic					FP,MC,KG	SK,OR,MN
dl-limonene	Citrus				XX	MC,FP,KG	MN,OR,SK
gamma nonalactone	Coconut					FP,MC,KG	MN,OR,SK
hexanol	Herbal					FP,MC,KG	SK,OR,MN
isoamyl butyrate	Fruity				X	MC,FP,KG	MN,OR,SK
methyl pyrazine	Nutty					FP,MC,KG	SK,MN,OR
perillene	Woody				XX	MC,FP,KG	MN,SK,OR
phenyl ethyl acetate	Floral					FP,MC,KG	MN,SK,OR
styrene	Balsamic					KG,MC,FP	MN,SK,OR
xylene isomer #1	Sweet					KG,FP,MC	MN,OR,SK
xylene isomer #2	Sweet					KG,FP,MC	MN,OR,SK

Phase II: 3x3 – Results: Biplot of Principle Component Analysis of Combined Variety, Environment, and Aroma Compounds

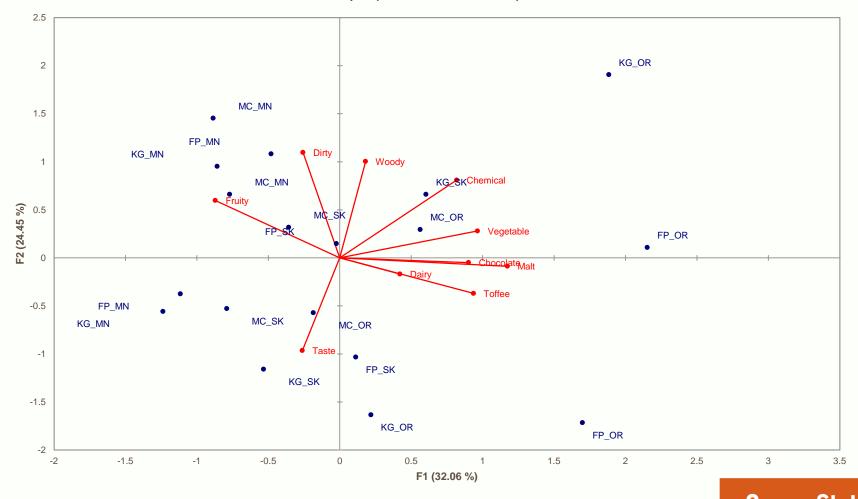
Biplot (axes F1 and F2: 54.57 %)

21 July 8, 2015

Phase II: 3x3 – Sensory Results

Sensory Evaluations

- Free-choice profiling
- 10 trained panelist from Sierra Nevada Brewing Co.
- Significant variety, environment and interaction effects detected


Sensory: ANOVA

Flavor	Variety	Environment	GXE	Rep
Total				_
Taste	Χ			
Malt	Χ	X	Χ	
Fruity	Χ	X	Χ	
Chocolate	Χ	Х		Χ
Toffee	Χ	X	Χ	Χ
Vegetable	Χ	Х		
Dairy		X		
Woody	Χ			
Chemical		Χ		

Phase II: 3x3 - Results: Biplot of Principle Component Analysis of Combined Variety, Environment, and Sensory Evaluations

Biplot (axes F1 and F2: 56.51 %)

Phase II: 3x3 - Correlation: Detection of aroma compounds in sensory?

Minnesota

Minnesota Oregon

Oregon

Oregon

Minnesota

Aroma Compounds

phenyl ethyl alcohol

ethyl hexanoate

3-methyl butanal

dimethyl sulfide

ethyl acetate

2-ethyl furan

Aroma Compound Flavor **Top Variety Top Environment** 2, 3-butanedione Full Pint Buttery Oregon Cheesy Butyric acid Metcalfe Minnesota Waxy Nonanoic acid Full Pint Oregon Nutty 2-ethyl-3,5-dimethyl pyrazine **Full Pint** Minnesota 2,6-diethyl pyrazine Metcalfe Nutty Oregon Nutty 2-acetyl furan Klages Oregon Bready Furfuryl alcohol Full Pint Minnesota Roasted 2-formyl-1-methyl pyrrole Klages Minnesota Chocolate 2-methyl butanal Full Pint Oregon Spicy 2-methyl propanal Metcalfe Minnesota phenyl acetaldehyde Green Metcalfe Oregon

Metcalfe

Metcalfe

Full Pint

Full Pint

Full Pint

Full Pint

Sensory

Flavor	Top Variety	Top Environment
Taste	Klages	Saskatchewan
Dairy	Full Pint	Oregon
Malty	Full Pint	Oregon
Toffee	Full Pint	Oregon
Roasted	Full Pint	Oregon
Chocolate	Full Pint	Oregon
Fruity	Metcalfe	Minnesota
Vegetable	Metcalfe	Oregon
Chemical	Klages	Oregon
Dirty	Metcalfe	Minnesota

Floral

Fruity

Ethereal

Aldehyde

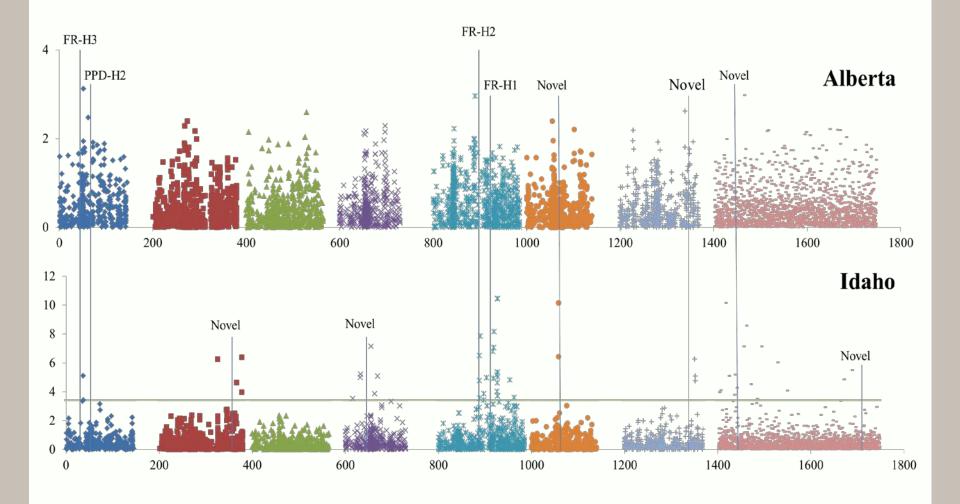
Chemical

Sulferous

What does this mean?

- Variety significantly influences certain flavor compounds
 - Genetics and particular compound(s) composition
 - Indirect selection for amino acid composition → aroma compounds
 - Genetics and compound(s) content
 - Higher protein → More amino acids → Increased Maillard products
 - Higher starch → More reducing sugars → Increased Maillard products
- Environment significantly influences certain flavor groups
 - Nutrients, day length, temperature, moisture, management, etc.
 - More Nitrogen (applied & residual) → Higher protein
- Interaction (G X E)
 - Some varieties are more nitrogen sensitive than others

How do we apply this in a breeding program?



Phase III: Exotic Beer Flavor - GWAS

Genetically diversity panel subset from USDA barley world core, harvested 2012 in Corvallis, OR

- 174 genetically diverse lines from around the world
- Germplasm profiling: agronomic performance, chemical analysis of wort, GC-MS, GC-O of wort, amino acid analysis, and wort sensory
- Nano-brewing & beer sensory
- Genome-wide Association Studies (GWAS) on genetics of beer flavor

Phase IV: Biparental Populations

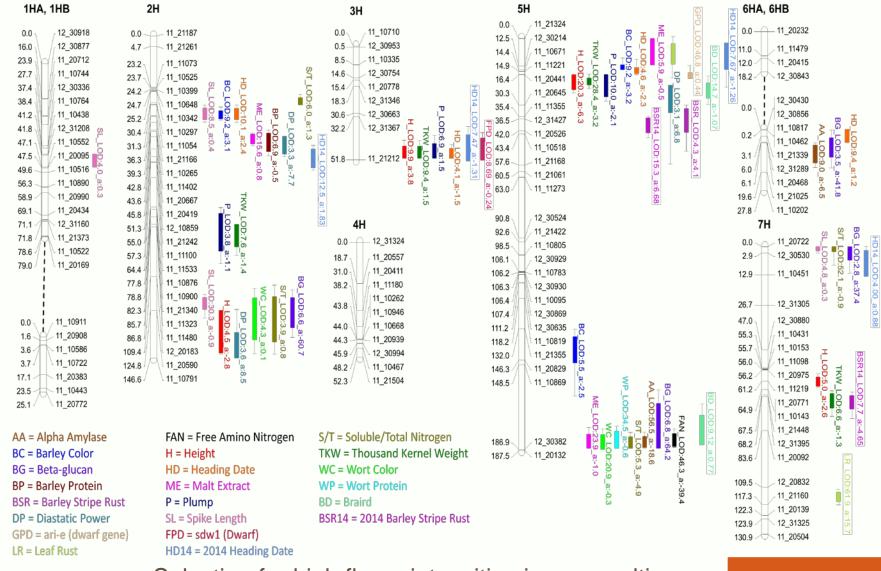
Oregon Promise

(Full Pint x Golden Promise)

Maris Beaver

(Full Pint x Maris Otter)

Full Stein


(Full Pint x Violetta)

- Doubled haploid populations of locally adapted material by renowned flavor varieties
- Measure agronomic performance, malting quality, nano-brew.
- Flavor compounds??????
- Quantitative Trait Locus (QTL) mapping for all traits to discover underlying genes.

Selection for high flavor intensities in new malting barley varieties

Acknowledgments

Advisors:

- Dr. Patrick Hayes
- Dr. Thomas Shellhammer

Committee Members

- Dr. Andrew Ross
- Dr. Alfonso Cuesta-Marcos
- Dr. Jeffrey Leonard
- Dr. Glenn Howe
- Dr. Mary Cluskey

Graduate Students

- Ryan Graebner
- Meghan Peltz
- Daniel Vollmer
- Daniel Sharp
- Araby Belcher
- Brigid Meints

Barleyworld Crew

- Scott Fisk
- Laura Helgerson
- Tanya Flickchin
- Pierrette Castro
- Elizabeth Hayes
- Dylan Larkin
- Deirdre Apple

AMBA, BARI, and Great Western Malting

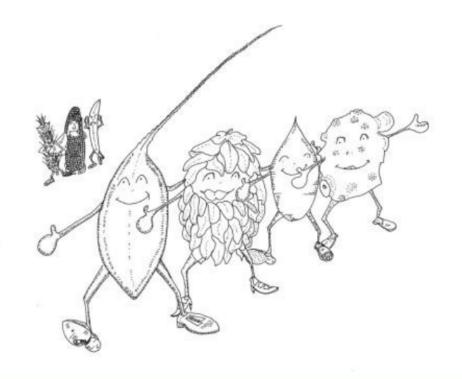
 Doubled haploid populations and breeding program support

Flavor 6-pack

- Sierra Nevada Brewing Co.
- New Glarus Brewing Co.
- Summit Brewing Co.
- Russian River Brewing Co.
- Bells Brewing Co.
- Firestone-Walker Brewing Co.

Cooperators

- Rahr Malting Co.
- Canadian Malting Barley Technical Center
- Canadian Grain Commission



United States Department of Agriculture National Institute of Food and Agriculture

Think Barley

Drink Barley

