

Measuring in an uncertain world...

Aaron MacLeod, Chemist

Canadian Grain Commission

The Science of Beer

A matter of uncertainty

"All analytical measurements are wrong; its just a matter of how large the errors are, and whether they are acceptable."

Analytical methods

- An "analytical procedure" is an orderly step-by step instruction designed to ensure operational uniformity and to minimize uncertainty

Error

- Error is defined as the difference between an individual measurement result and the true value
- Error is an ideal concept, and errors cannot be known exactly

Uncertainty

- Uncertainty is a parameter associated with a measurement result that characterizes the dispersion of the values that could reasonably be attributed to this mesurand

Sources of Uncertainty

- Analyst
- Instrument long term (drift, maintenance,...)
- Instrument short term (noise, calibration, ...)
- dispensing, weighing, etc. . .
- Laboratory environment

Random vs. Systematic

- Random errors usually result from unpredictable variations of parameters that influence the measured result
- Systematic errors, in the course of a number of analyses, remain constant or vary in a predictable way

Accuracy vs Precision

Quantifying uncertainty

- There is always a margin of doubt about any measurement
- We need to ask 'How big is the margin?' and 'How bad is the doubt?'

Repeatability error

- an estimate of the precision that can be expected when one analyst performs a single analysis.
- The repeatability of a method can be determined by monitoring its performance

Standard deviation

- Calculating the SD from a series of single measurements

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

Standard deviation

- Calculating the SD from a series of duplicate measurements
$s=\sqrt{\frac{\sum d^{2}}{2 n}}$

mU/g of sample			
310			
312			
310			
299			
312			Mean $=$
		SD $=$	511
318			
310			
318			
314			
308			
312			
319			
311			
308			
304			

Coefficient of Variation

- Expresses the standard deviation as a percentage of the mean result

$$
c V=\frac{s}{\bar{X}} \times 100 \%
$$

Repeatability Value

- Two results obtained in the same lab by the same operator should not differ by more than this amount

$$
r_{95}=2.8 s
$$

mean $=311$

$$
\begin{array}{c|c}
\mathrm{SD}= & 5.3 \\
\hline \mathrm{CV} \%= & 1.7 \\
\hline \mathrm{r}_{95}= & 15 \\
\hline
\end{array}
$$

Standard Error

- the more measurements you take, the better the estimate you will have of the 'true' value.

$$
S E=\frac{s}{\sqrt{n}}
$$

Identify sources of variation

- Replicate measurements at selected stages of a method can help identify the steps associated with the largest sources of error

$\xrightarrow{\text { 1. } \alpha \text {-amylase }}$

2. Filtration of insoluble substrate

> | Dyed starch fragments |
| :---: |
| soluble in $\mathrm{H}_{2} \mathrm{O}:$ |
| absorption at 590 nm |

Combining uncertainties

$$
\sigma_{\text {method }}^{2}=\frac{\sigma_{\text {extraction }}^{2}}{n_{\text {extractions }}}+\frac{\sigma_{\text {assay }}^{2}}{n_{\text {assays }}}
$$

Extraction

eg. single extraction, duplicate assays

$$
\begin{aligned}
\sigma_{\text {method }} & =\sqrt{\frac{\sigma_{\text {extraction }}^{2}}{n_{\text {extractions }}}+\frac{\sigma_{\text {assay }}^{2}}{n_{\text {assays }}}} \\
& =\sqrt{\frac{(5.4)^{2}}{1}+\frac{(0.6)^{2}}{2}}
\end{aligned}
$$

$$
=\sqrt{\frac{29.16}{1}+\frac{0.36}{2}}
$$

eg. single extraction, duplicate assays

$$
\begin{aligned}
\sigma_{\text {method }} & =\sqrt{29.16+0.18} \\
& =\sqrt{29.34} \\
& =5.42
\end{aligned}
$$

eg. duplicate extraction, single assays

$\sigma_{\text {method }}=\sqrt{\frac{\sigma_{\text {extraction }}^{2}}{n_{\text {extractions }}}+\frac{\sigma_{\text {assay }}^{2}}{n_{\text {assays }}}}$

$$
=\sqrt{\frac{(5.4)^{2}}{2}+\frac{(0.6)^{2}}{1}}
$$

$$
=\sqrt{\frac{29.16}{2}+\frac{0.36}{1}}
$$

eg. single extraction, duplicate assays

$$
\begin{aligned}
\sigma_{\text {method }} & =\sqrt{14.58+0.36} \\
& =\sqrt{14.94} \\
& =3.86
\end{aligned}
$$

eg. duplicate extractions, duplicate assays

$\sigma_{\text {method }}=\sqrt{\frac{\sigma_{\text {extraction }}^{2}}{n_{\text {extractions }}}+\frac{\sigma_{\text {assay }}^{2}}{n_{\text {assays }}}}$
$=\sqrt{\frac{(5.4)^{2}}{2}+\frac{(0.6)^{2}}{2}}$
$=\sqrt{\frac{29.16}{2}+\frac{0.36}{2}}$

eg. single extraction, duplicate assays

$$
\begin{aligned}
\sigma_{\text {method }} & =\sqrt{14.58+0.18} \\
& =\sqrt{14.76} \\
& =3.84
\end{aligned}
$$

Take home lesson

- Do replication where you will get the biggest bang for your buck!

Normal distribution of errors

Confidence intervals

- estimated range of values which is likely to include the measured result

$$
x \pm k s
$$

Coverage factor

- the value of the coverage factor k is chosen on the basis of the desired level of confidence

$$
\begin{aligned}
& k=1,68 \% \text { confidence range } \\
& k=2,95 \% \text { confidence range } \\
& k=3,99 \% \text { confidence range }
\end{aligned}
$$

$$
\text { eg. } 311 \pm 2(5.3)=311 \pm 10.6
$$

Confidence intervals

- 68% confidence range $=306$ to 316
- 95% confidence range $=300$ to 321
- 99% confidence range $=295$ to 327

Specified
Upper Limit

Specified
Lower Limit

Specified Upper Limit

 Specified

 Specified}

Lower Limit
--耳-
$\longrightarrow \longrightarrow \longrightarrow$
--- -

I I

$\square \square$

Practical significance

- How big a difference do you need to detect?
- What is a meaningful difference in your application?
- What magnitude of result or variance would trigger an action?

Precision

Based on a collaborative study, repeatability and reproducibility coefficients of variation can be expected to range from 1.1 to 2.0% and 5.0 to 6.5%, respectively, over typical FAN concentrations encountered in wort.

References

1. American Society of Brewing Chemists. Report of Subcommittee on Free Amino Nitrogen. Journal 33:88, 1975.
2. American Society of Brewing Chemists. Report of Subcommittee on Methods of Analysis Wort Review. Journal 68:222, 2010.
3. American Society of Brewing Chemists. Report of Subcommittee on Determination of Free Amino Nitrogen in Wort by Segmented Flow Analysis. Journal 69:295, 2011.

Determination of Free Amino Nitrogen in Wort by Segmented Flow Analysis

Subommitive Members：A．Mad bod，Chair C Adans A Budde； \mathbb{T} ．

CONCLUSIONS

1．Repeatability and reproducibility onefficients of variation for de－ bermination of free arrine nitrogen（FAN）by segmented flow andysis（SFA）ranged from 1.1 to 20 and 50 to 6.3 ，reque－ tively，and were judged acceptable．

RECOMMENDATIONS

1．The shbormitise recommends that detemination of FAN in pori by SFA be included in the ASPC Methodr of Anubsie（1）．
2．Dischuge the subeomrimee．

This is the subcommitive＇s fint yoar of exisimoe．The subwom－ mittes was fonmed on the revommendation of the Subeommitee on Mehodr of Andyun Wort Review（2）．SPA is commonly used for the determination of PAN in port．

PROCEDURE

A toul of eight barley malt samples represting four sample pairs（similar but distincti）with a range of BAN level were sent fo each wollaboraior．For each sample，euch oollaboraior preparad a Congress wort acconding in ASBC Method Malt4 and measured FAN usingsemertiad fow instramentation．Collatonions were alsp
erence method，at 258 and 9.39 ，respectively，which was deter－ mined by a previcus collaborstive study（39．

LITERATUEE CTIVD

 al Analysis－4 Touten und thode coll bonalive iesinig proosur，Wori－ 12 Free ando niluyen The society，SI Pull MN， 200 ．
2．Anerian Sociely of Erewing Cheniste Report of the Subommimes
 223，2010．
3．Anerim Sockly of Brewing Chentase Repor of the Sutconmilte on

TABEEI
FireAmino Nifregen in Wort（Prm）Deternined
by Sigrinated Mow Andyais

Cobethoralor	Santur Pair		Sample Pinir		Samplr Pair		Smmplor Prir	
	城	H	［	［1］	［：	F	\square	H
1	162	15	208	213	172	191	212	213
2	162	161	212	208	125	128	2213	213
3	171	171	2211	278	310	271	지	37
4	154	153	2 SE	177	183	183	213	217
5	176	17	228	230	318	213	27	29
6	173	173	227	230	215	교플	27	78
7	137	110	159	1531	$1{ }^{14}$	169	$18{ }^{1}$	19%
8	17	179	72	276	317	215	208	241
9	187	188	230	278	110	211	31	72
10	172	179	276	219	312	312	39	782
11	164	1 1匀	219	216	179	177	24	720
12	185	185	178	272	212	211	27	2지지
13	167	170	219	216	124	125	27	219
H	1世3	1es	1717	717	169	10 C	910，	713

TABLE I

Free Amino Nitrogen in Wort (ppm) Determined by Segmented Flow Analysis

Collaborator	Sample Pair		Sample Pair		Sample Pair		Sample Pair	
	A	B	C	D	E	F	G	H
1	162	158	208	213	192	191	212	215
2	162	161	212	208	189	188	213	213
3	171	171	220	223	200	201	230	227
4	154	155	205	197	183	183	213	217
5	176	177	228	230	208	213	237	239
6	173	175	227	230	206	208	237	238
7	$133{ }^{\text {a }}$	$116^{\text {a }}$	$156{ }^{\text {a }}$	$183{ }^{\text {a }}$	$162^{\text {a }}$	$165^{\text {a }}$	185 ${ }^{\text {a }}$	$199{ }^{\text {a }}$
8	177	179	222	236	209	215	228	241
9	187	188	230	223	210	211	231	232
10	172	179	226	219	202	202	229	232
11	164	168	219	216	199	197	224	226
12	186	185	238	232	212	211	237	240
13	167	170	219	216	194	185	222	219
14	163	165	212	212	190	186	210	213
15	151	155	200	205	196	194	203	215
Mean ${ }^{\text {b }}$	168.9	170.4	219.0	218.6	199.3	198.9	223.3	226.2
Grand mean ${ }^{\text {b }}$. 1		

TABLE III
Statistical Summary of Results ${ }^{\text {a }}$

Sample Pair	No. of Labs	Grand Mean	Repeatability			Reproducibility		
			$S_{\text {r }}$	cV_{r}	r_{95}	$S_{\text {R }}$	cV_{R}	R_{95}
A/B	14	169.7	1.9	1.1	5.2	10.7	6.3	29.8
C/D	14	218.8	4.4	2.0	12.2	10.9	5.0	30.5
E/F	14	199.1	2.6	1.3	7.2	10.2	5.1	28.6
G/H	14	224.8	2.7	1.2	7.5	11.2	5.0	31.3

The Horwitz equation

- There are natural limits on the Reproducibility of chemical measurement methods

$$
\mathrm{CV}_{\mathrm{R}}=2 \mathrm{C}^{-0.15}
$$

- where C is the concentration in mass fraction

Proficiency testing schemes

- ASBC
- Barley, Malt, Beer, Hops, Mycotoxins
- Campden BRI
- Malt (MAPS), Beer (BAPS)

Z-scores

- Z is a measure of how far an individual lab result is from the mean (in units of standard deviation)

$$
Z=\frac{(X-\bar{x})}{S}
$$

Test	Within a lab $\left(\mathrm{r}_{95}\right)$	Between labs $\left(\mathrm{R}_{95}\right)$
Moisture (\%)	0.2	0.8
Extract (\%)	0.4	1.4
Friability (\%)	3.0	7.0
Color (${ }^{\circ}$ ASBC)	0.2	0.5
Diastatic Power ($\left.{ }^{\circ} \mathrm{L}\right)$	10	30
Alpha Amylase (DU)	5	15
FAN (mg/L)	7	40
B-glucan (mg/L)	20	50

Standard Reference Material

- SRM should represent the same sample matrix
- SRM must be homogeneous so that test portions are identical for the analyte
- SRM must be stable over time with respect to the analyte concentration

Non parametric data

- Sensitivity is the probability that the test will correctly identify a positive sample.
- Specificity is the probability that the test will correctly identify a negative sample

The Truth

Test Score:	Positive	Negative	$\mathrm{PPV}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$
Positive	True Positives (TP)	False Positives (FP) b	
Negative	C False Negatives (FN)	d True Negatives (TN)	$\mathrm{NPV}=\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FN}}$
	Sensitivity TP	Specificity TN	
	TP + FN	TN + FP	
Or,	a	d	
	$a+c$	$d+b$	

- Sensitivity = (\# of true positives)/(\# of true positives + \# of false negatives) * 100
- Specificity = (\# of true negatives)/(\# of true negatives + \# of false positives) * 100

Good news!

- Good routine QC practices can all be used as tools in the estimation of uncertainty of analytical measurements
- Plan your method development and routine QC program with this in mind

Discussion...

The Science of Beer

