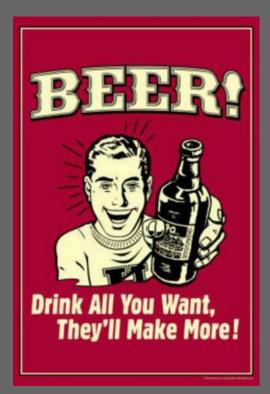


B.S. Professional Chemistry from CSU Chico


Analytical Quality Technician for two years at SNBCo.

Analytical Quality Supervisor at SNBC for the past two years

What is Quality?

- To a consumer:
- Consistent Product that is drinkable...

- To an employee at Sierra Nevada:
- Product meeting certain specifications in various analyses
- Flavor Stability
- Meeting Consumers expectations

Quality Control vs Quality Assurance

What is the difference between Quality Control (QC) and Quality Assurance (QA)?

 QC involves testing a product to verify it is within certain specifications and detecting any defects. QC is a reactionary or corrective processe.

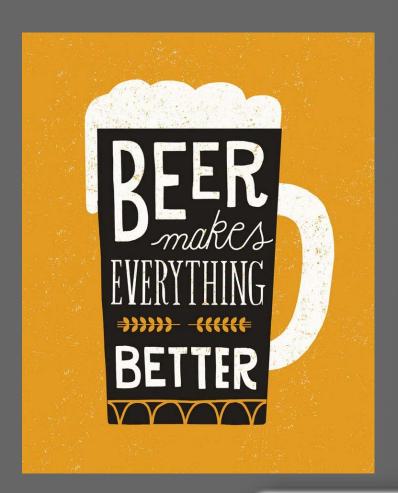
• QA involves testing current processes/ standards/ procedures to verify the testing we are conducting is the correct way to do it. We have a certain level of confidence to the results we are producing. QA is a planned preventive process.

2017 ASBC Meeting

Quality Control

- Quality Control includes the routine analyses or checks on beer production for example:
 - Bitterness Units
 - Alcohol
 - Extract
 - CO2
 - DO

Although product not within specifications can still be corrected before the package, these tests are done on something that has already happened and are considered quality control measurements


2017 ASBC Meeting

Quality Assurance

- Quality Assurance starts before production begins.
 - For the lab, we need to determine what equipment or processes we need in order to keep our product within set specifications.
 - Preventative and scheduled maintenance
 - Calibration of equipment
 - Audits
 - SOP's

Topics Covered

- Analytical, Packaging and Microbiology Analyses
- Audits
- Sierra Nevada's QC Beer Program
- SPC Charts
- Standard Operating Procedures

Analytical Quality Analyses

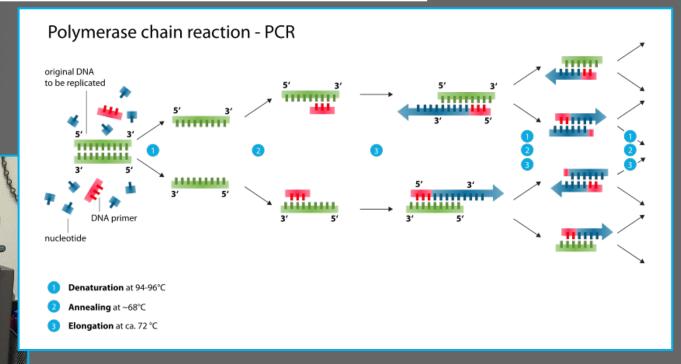
- Sierra Nevada's Analytical Quality Lab analyses include:
 - Using an Anton Paar Alcolyzer/
 - DMA for ABV and Extract values
 - Using a UV-VIS
 Spectrophotometer for
 Bitterness Units and Color

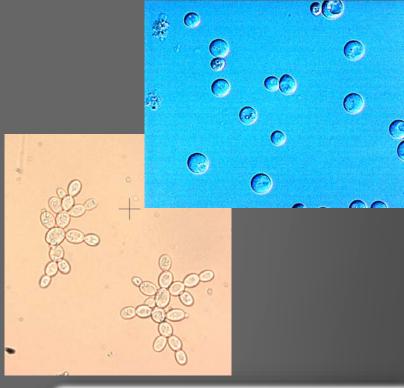
Analytical Quality Analyses

- GC-MS
 - Vicinal Diketones
 - Every Lager Fermentation Tank is measured
 for VDK and SO₂ before package

- Discrete Analyzer
 - SO₂ and Acetaldehyde

Packaging Quality Analyses

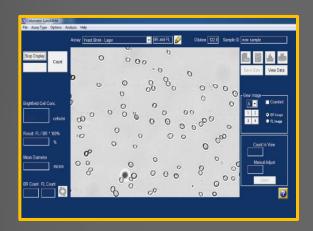

- Sierra Nevada's Packaging Lab analyses includes:
 - CO₂, DO, TPO using an Orbisphere 3625 and
 - Hach 6610
 - Seam and crimper checks
 - Secure Seal Tests (SST)
 - ABV, Extract and pH


Microbiology Quality Analyses

Sierra Nevada's Micro Lab follows wort all the way through to packaging, methods/Instrumentation include:

Polymerase Chain Reaction (PCR)

Microscopy



Microbiology Quality Analyses

Membrane Filtration

Yeast Brink Cell Counts

Bright Beer Tank Cell Counts

Propagations

Instrument Calibrations

Sierra Nevada's QA Labs have quite a few

instruments that require regular calibration. Why is it important to calibrate these instruments?

- Maintains Instrument Accuracy
- Minimizes error with values between calibrationpoints

Instrument Calibrations

Different instruments call for different calibration timelines for example:

- GC-MS: Once a week
- pH Meter: Once a day
- Anton Paar Alcolyzer/DMA: Once to twice a week depending on water check drift
- UV-VIS: Once a month

Documentation

It is very important to document when instruments were calibrated. Here are a couple of examples:

Anton Paar Alcolyzer

• pH Meter

pH CALIBRATION LOG							
DATE	CALIBRATED	NEW SOAKING SOLUTION	PROBE TOPPED OFF	BUFFER CHANGED	SLOPE	INITIALS	COMMENTS
4/20	Y	Y	Y	Y	997	JMC	1 1 1
4/21	Y	Y	Y	1	998	OW	
4/22	4	1	1	1	100.0	19	H-V-H-H
4/23	Y	Y	Y	Y	100,0	Seth	
4/24	Y	Y	Y	Y	99.8	JV	A STATE OF THE STA
4/25	Ÿ.	V	Y	Y	997	5mc	A section
4796	Y	Y	V	Y	99,7	SM	
7/27	Y	Y	1	Y	997	ONe	
4/28	Y	1	E	1	99,7	5Mc	

Date	Squishy- Squishy? Y or N	Density Check # (ie. 0.00005)	Density of double di H2O	Std Value	Alcohol Reading		
	AND DECEMBER				Alcolyzer alc	DMA alc	
+130	N	0.00008	0.998211	997	092	9.915	
21/1	153	0.000009	0,998218	9-97	9,93	9990	
5/2	10	0.000018	0.998201	997	995	9 950	

Documentation

- This is an example of a Signin sheet we use for all yeast harvests. Each harvest is analyzed at least twice before being used in brewing.
- Data is not only written on this log but entered into a database for traceability purposes.

	YEAST SIGN-IN SHEET						
New Yeast Code brink/date/tank/gen/brand	Taken by	Time brought to Lab	Ck. Date	Count x	% Dead	рН	Comr
XIX 02005 13 17 81908A PAZ	W		5/16		3.9	4.68	
XX 04W051617816 08A PAL	OB	4964	5/16	1.27	24	4.43	0 / 1 = 1
XX04W08161781608APM	W	4pm	5.1	1.52	3.6	4.43	Rev 1.51
1x 03W 051917 821 09A PAL	DB JMC	730 A	9/19	1.44	3.8	4.42	
1/02W052117 82609A-PAL	PA	3:53 A	5/22	1.47	4.3	4.51	Rev 1.5
N 09E . 052217 . 534 , 01A . OKT		715 A	5/22	1.14	34	4.33	rev pH 1
106W 052217 804 09A PAL	03	815 A	5/22	-1.37	3.2	4.47	
102W05211782689A-PAL	DA	4:08A	19/23	1.46	3.9	4.61	
X012052317.832.09A.PAL	SE	12:37	-5/23	3 1.36	3/2	4,20	
01W05231783209APM	DA	4:05A	19/24	1.38	3.8		
104 W 032417 814 094 PAI	DR	140 A	5/24	1.43	13.1	4.37	

How do we keep brands consistent with multiple facilities?

SOP's

Standard Operating Procedures (SOP's) are crucial when the same instrument or procedure are used at different facilities

- Helps maintain alignment between labs
- Helps to reduce errors or variability between technicians or facilities
- Increases efficiency by keeping technicians up-to-date on current procedures

Audits!

Auditing processes fall under Quality Assurance and a couple reasons why are:

- Ensures the lab is generating data of integrity and quality
- Ensures the lab is following good laboratory practices (GLP)
- Will help to determine when it is time to calibrate an instrument

Analytical Audits

Analytical lab audits include:

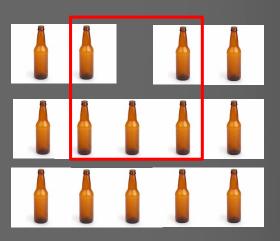
- Brewhouse Inline Gravity Meter- Weekly
- Filtration Color Meter- Weekly
- Brewhouse Dissolved Oxygen Meter- Monthly
- Brewery-wide pH probes- Monthly
- Hand Held DMA's- Quarterly

Packaging Audits

The Packaging Lab Audits include:

CO2 audits on Orbisphere 3625 and Hach 6110

- Oxygen Sensor audit on Orbisphere
 Hach 6110- Weekly
- Anton Paar Carbo QC audit- Monthly
- Rinser Survey/Audit- Quarterly



Packaging Audits

Bottle Bursts

- Second Revolution
- Third Revolution

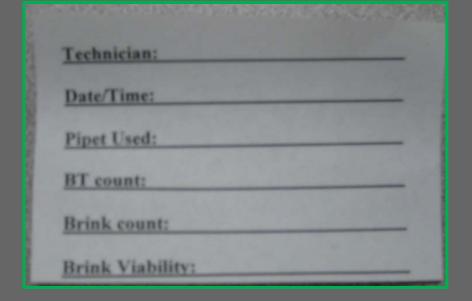
Microbiology Audits

The Micro Lab audits include:

- Inline Aber on ale yeast- monthly
- Wort- weekly
- Lightning swabbing- daily
- Swabbing can and glass line- weekly
- Water tanks- weekly

Water Quality

- Our brewing water must go through a few processes before being used:
- A 5 μm sediment filter to take out any solids
- Water is then sent through Ultra-Violet light to be sterilized and some chlorine is stripped.
- Next, water is sent through a Carbon filter to take out any Chlorine compounds left along with VOC's
- The water is then acidified for brewing using food grade phosphoric acid.



Internal Performance Audit

 Every Quarter the micro lab conducts an audit on all technicians that perform yeast cell counts on brinks,
 Bright Beer Tanks, and packages

Our goal is to have all technicians within a 10%

deviation.

QC Beer Audit Program

Sierra Nevada has an internal check sample that is measured each day before production samples are measured

- Same beer is used between both breweries
- Tested on Anton Paar Alcolyzer/DMA for ABV and Extract
- Tested on UV-VIS for Bitterness Units and Color
- Tested on pH meter
- Tested on Orbisphere 3625 and Hach 6110 for CO2
- Measured by TTB Certified Third Party Lab

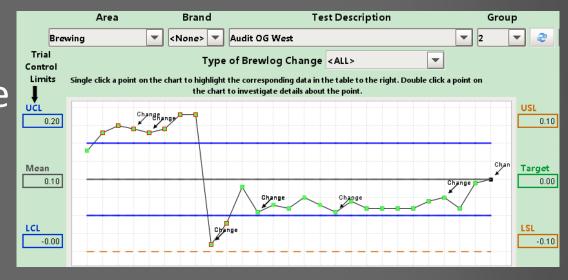
Specifications

Specs								
Brand Department Search Spec Description								
EH	IA ▼ <all></all>	▼				Export		
BRANDID	Department	SpecDesc	Low	Target	High	L Update		
EHA	Brewhouse	East Last Runnings	3.2	3.7	4.5	_		
EHA	Brewhouse	First Runnings	18.5	20	21.5			
EHA	Brewhouse	Last Runnings	3.2	3.7	4.5			
EHA	Brewhouse	Mash pH	5.3	5.38	5.46			
EHA	Brewhouse	OG	16.4	16.6	16.8			
EHA	Brewhouse	pH Last Runnings	5.25	5.5	5.75			
EHA	Brewhouse	Wort BU	81	85	88			
EHA	Brewhouse	Wort Color	20	22	24			
EHA	Brewhouse	Wort pH	5.08	5.14	5.2			
EHA	Fermentation	Alcohol	6.5	6.7	6.9	2016-01-05		
EHA	Fermentation	BU	62	67	72			
EHA	Fermentation	CO2	2.65	2.7	2.75			
EHA	Fermentation	Color	22	24	26			
EHA	Fermentation	Day 13 CO2	2.6	2.65	2.7			
EHA	Fermentation	Day 5 BU	62	67	72			
EHA	Fermentation	Day 5 Color	22	24	26			
EHA	Fermentation	Last CO2	2.6	2.65	2.7			
EHA	Fermentation	SO2	0	4	10			
EHA	Fermentation	TA	3.8	4	4.2			
EHA	Fermentation	TA pH	4.4	4.49	4.59			
EHA	Fermentation	Tank Cell/ml	6,640,000	8,300,000	9.960.0			
EHA	Fermentation	Total Diacetyl (Dia + Aca)	0	40	100			
EHA	Filtration	AE BBT	3.8	4	4.2			
EHA	Filtration	AE BL	3.8	4	4.2			
EHA	Filtration	Alcohol BBT	6.4	6.7	7			
EHA	Filtration	Alcohol BL	6.4	6.7	7			
EHA	Filtration	Alcohol PR	6.4	6.7	7			
EHA	Filtration	BBT Keg CO2	2.55	2.6	2.65			
EHA	Filtration	CO2	2.6	2.65	2.7			
EHA	Filtration	DO	0	25	50			
EHA	Filtration	pH BBT	4.41	4.5	4.6			
EHA	Filtration	pH BL	4.41	4.5	4.6			
EHA	Filtration	pH PR	4.41	4.5	4.6			
EHA	Packaging	Bottle DO	0	25	50			
EHA	Packaging	Color	21	23	25			

Statistical Process Chart

Statistical Process Charts (SPC) are beneficial for analyzing how well processes are performing

- Allow us to determine if a process is out of control
- Can help to determine if process variation is due to common or special causes
- One example to use an SPC chart is for our QC Beer, we can assess how well all four Anton Paar Alcolyzers/DMAs are performing


SPC Charts

- The top chart is used to display our QC ABV results from day to day.
- The second graph displays our West Brewhouse Original Gravity for Pale.
- Upper and lower control limits are calculated and if a process is in control all data points will be within these points.
- If points are outside then process is out of control and need to determine what the special cause is.
- Just because a process is in control does not mean a product is within specification

SPC Charts

 The Chart to the right displays the percent difference between the inline Densitometer vs an Anton Paar Densitometer

 We set the specifications to be +/- 0.10. Once we see two consecutive weeks of greater than a 10% difference between the two instruments, the Wort way inline densitometer will be calibrated.

ASBC Check Sample

- Great way to evaluate alternative methods or instrumentation
 - Flow Analyzer vs Discrete Analyzer

 Not only compare results between Sierra Nevada facilities but other labs within the industry

Quality Maintenance

 A good quality assurance program will limit the need for excessive measurements in quality control. A well operated process does not require to be analyzed as often as an out of control process

What my mother thinks I do What my friends think I do

What society thinks I do

What I think I do

What I really do