

Getting Ahead of Beer Spoilers:

A brewery's case study of aerobic plating to prevent beer spoilers

<u>Liz Nagle</u>

Quality Analyst

Ballast Point Brewing and Distilling

liz@ballastpoint.com

- Most of our microbiology programs focus on chasing beer spoilers, including tailoring the media we use to isolate spoilers only.
 - Unfortunately, these programs are inherently reactive and take several days to give a result, potentially allowing an infection to spread and do more damage.
 - We have found that the best way to combat spoilage is to zoom out from our focus on beer spoilers and to look instead at the aerobic environments they live in.
 - I will present some background information and a case study from Ballast Point to prove why looking 'beyond beer spoilers' is essential for managing proper hygiene in the brewery.

Common Beer spoilers

Common Brewery-Related Microorganisms

WITH CONTRIBUTIONS BY Anheuser-Busch, Inc. MillerCoors

Candida intermedia	Plate 1
Hanseniaspora uvarum	Plate 1
Klebsiella terrigena	Plate 2
Kluyveromyces marxianus	Plate 2
Lactobacillus acidophilus	Plate 3
Lactobacillus brevisPla	ates 4, 5, 6
Lactobacillus buchneri	Plate 7
Lactobacillus curvatus subsp	Plate 8
Lactobacillus delbrueckii	Plate 9
Lactobacillus paracasei subsp. paracasei	Plate 10
Lactobacillus plantarum	Plate 11
Pectinatus cerevisiiphilus	Plate 12
Pediococcus damnosus	Plate 13
Pediococcus parvulus	Plate 14
Pediococcus pentosaceus	Plate 15
Pichia membranaefaciens	Plate 12
Rhodotorula glutinis	Plate 16
Saccharomyces diasticus	Plate 16
Schizosaccharomyces pombe	Plate 17
Torulaspora delbrueckii	Plate 17
Zygosaccharomyces bailii	Plate 18
Zygosaccharomyces rouxii	Plate 18
Zymomonas mobilis	Plate 19

Aerobic bacteria are dangerous

1. Colonization of surfaces by acetic acid bacteria

4. Colonization of anaerobic beer spoilers

2. Formation of slime by acetic acid bacteria

5. Adapted beer spoilers

3. Colonization of yeasts and *L. brevis* Acetic acid bacteria Lactic acid bacteria Slime coating yeasts Pectinatus sp.

Symbols:

Megasphaera sp.

Figure 1. Development of contaminations in breweries according to Back (1994).

Current Biology

Current Biology 24, 2411-2416, October 20, 2014 ©2014 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2014.08.057

Biofilms allow exponential growth

Aerobic swabs are enlightening!

Beer spoilers are always available

Figure 8. Lactic acid bacterial community composition on brewery surfaces, beers, and ingredients. LAB-TRFLP profiles of samples exhibiting high Lactobacillales relative abundance by 16S rRNA gene sequencing.

Aerobic plates are enlightening!

Sheet filter pressure problems

Aerobic growth - Filters in chronological order

Bottling line problems

Aerobic Growth – Bottling runs in chronological order

- Aerobic brewery organisms are easy to detect
- Aerobic brewery organisms are both hygiene indicators and gateway organisms (encourage anaerobic growth)
- Prevention/action at the aerobic stages can help prevent anaerobic growth entirely!

Thank you!

