

Monitoring and control of onion-like off-flavor component precursor in large-scale brewing

Taku Irie, Shigekuni Noba and Minoru Kobayashi Asahi Breweries, Ltd.

- Background
- Purpose of this Study
- Materials and Methods
- Results and Discussion
- Summary

- Background
- Purpose of this Study
- Materials and Methods
- Results and Discussion
- Summary

Background

Our results on the technological development for the control of sulfur off-flavor components in beer

- Analysis of volatile thiols in beer with on-fiber derivatization and GC/MS determination, M. Kobayashi, WBC 2012
- Factors affecting the formation of dimethyltrisulfide in beer, N. Doi, WBC 2013
- Mechanism of dimethyl trisulfide formation in stored beer, N. Doi, ASBC 2014
- Identification of a precursor of 2-mercapto-3-methyl-1-butanol in beer, S. Noba, WBC 2016
- Elucidation of the formation mechanism of 2-mercapto-3-methyl-butanol (2M3MB) in beer, S. Noba, EBC 2017
- Heterogeneous fermentation method in multi-filling cylindroconical vessels for high quality beer,
 Y. Nakamura, WBC 2012
- The equipment to sample the fermenting beer from four positions in the cylindroconical vessel and its practical application to flavor improvement in the brewery, H. Koizumi, WBC 2012
- Analysis of sugar attenuation with a curve-fitting method and its application for industrial fermentation control,

T. Irie, ASBC 2015

 Monitoring of an onion-like off-flavor component and its precursor in large-scale brewing, T. Irie, EBC 2017

For us, technologies to control sulfur off-flavor components are...

For us, technologies to control sulfur off-flavor components are...

Necessary to brew low-malt beer (Happoshu, New genre Beer) with low nutrients (amino acids, etc.) in the wort.

Beer

Malt: 67% and above

Happousyu

Malt Below 25%

New Genre

Malt 0% or Liquor type (Happoshu + spirits)

Liquor taxes and shop prices

 ¥77
 ¥47

 ¥28

 Beer
 Happoushu

 New Genre

¥215 ¥160 ¥140 Retail price per 350ml can (yen)

2017 ASBC Meeting

For us, technologies to control sulfur off-flavor components are...

Important to increase "clearness," "smoothness" and "freshness" of products, as these qualities are preferred by Japanese consumers.

Sophisticated clear taste

キレ: KIRE

Smoothness, Crispness, Cleanness, Refreshing

Background

Our results about controlling sulfur components

Analytical technology in our R & D center

- Analysis of volatile thiols in beer with on-fiber derivatization and GC/MS determination, M. Kobayashi, WBC 2012
- Factors affecting the formation of dimethyltrisulfide in beer, N. Doi, WBC 2013
- Mechanism of dimethyl trisulfide formation in stored beer, N. Doi, ASBC 2014
- Identification of a precursor of 2-mercapto-3-methyl-1-butanol in beer, S. Noba, WBC 2016
- Elucidation of the formation mechanism of 2-mercapto-3-methyl-butanol (2M3MB) in beer, S. Noba, EBC 2017

Production technology in our breweries

- Heterogeneous fermentation method in multi-filling cylindroconical vessels for high quality beer,
 Y. Nakamura, WBC 2012
- The equipment to sample the fermenting beer from four positions in the cylindroconical vessel and its practical application to flavor improvement in the brewery, H. Koizumi, WBC 2012
- Analysis of sugar attenuation with a curve-fitting method and its application for industrial fermentation control,

T. Irie, ASBC 2015

 Monitoring of an onion-like off-flavor component and its precursor in large-scale brewing, T. Irie, EBC 2017

Background

2017 ASBC Meeting

2-mercapto-3-methyl-1-butanol

Odor **Onion**, Sweat Threshold 0.13 ppb **Origin** Hops

Background : 2M3MB

2M3MB in beer and "onion-like" odor in sensory test

- > 2M3MB levels in beer differed among breweries.
- Comment "onion-like" increased above 0.40 ppb.

Background : 2M3MB

2M3MB in beer and "onion-like" odor in sensory test

- > 2M3MB levels in beer differed among breweries.
- Comment "onion-like" increased above 0.40 ppb.

- The precursor of 2M3MB was purified from isomerized hops and identified as 2,3-expoxy-3-methyl-butanal (EMB).
- The discovery of the precursor in food was first reported in 2016.

Increase of the precursor in the brewhouse

2017 ASBC Meeting

- EMB level increased both before and after wort cooling.
 - : "Hot aeration" and "Cold aeration"

Precursor of 2M3MB in cold wort

EMB levels in cold wort also differed among breweries.

2M3MB and its precursor in Fermentation

Brewery A vs Brewery B

- EMB levels decreased immediately, concomitant with the accumulation of 2M3MB.
- The difference in 2M3MB levels between Brewery A and B seemed to reflect the EMB levels at the start of fermentation.

2017 ASBC Meeting

2M3MB and its precursor in Fermentation

- Brewery C with high precursor levels showed a low conversion ratio to 2M3MB.
- > The conversion ratio also differed among breweries.

Proposed mechanism of formation of 2M3MB

1. Formation of precursor

- > Converted from iso α -acid in hops
- Requires oxygen
- Occurs in both hot and cold areas

2. Conversion to 2M3MB

- > Requires H_2S (Noba, EBC2017)
- Mediated by yeast; specific mechanism remains unclear.

2017 ASBC Meeting

- Background
- Purpose of this Study
- Materials and Methods
- Results and Discussion
- Summary

Our Goals

- To identify factors that control 2M3MB levels
- > To bring "onion-like" odor under control by changing factors

The topic of this presentation

- Further monitoring of the precursor (EMB) in the brewhouse, in the practical brewing process
- Investigation of the difference in the formation of the precursor at two breweries with differences in 2M3MB formation

- Background
- Purpose of this Study
- Materials and Methods
- Results and Discussion
- Summary

Monitoring levels of the precursor of 2M3MB in the brewhouse

- ➢ from wort kettle, whirlpool and wort cooler
- From the start of boiling to wort cooling

Monitoring levels of the precursor of 2M3MB in the brewhouse

- ➢ from wort kettle, whirlpool and wort cooler
- from the start of boiling to wort cooling
- > at 50 HL test brewery and two practical-scale breweries (A and B)

Brewery	Capacity
Test Brewery	50HL / Brew
Brewery A	700HL / Brew
Brewery B	1,250HL / Brew

Brewery A had higher levels of both 2M3MB and EMB than Brewery B.

- Background
- Purpose of this Study
- Materials and Methods
- Results and Discussion
- Summary

Precursor Content in 50HL Test-Brewery

EMB was already detected at the start of wort boiling.

Precursor Content in 50HL Test-Brewery

- EMB was already detected at the start of wort boiling.
- Level increased slightly through wort boiling.

Results and Discussion

- EMB was already detected at the start of wort boiling.
- Level increased slightly through wort boiling.
- Level increased further at casting (transfer from Kettle to Whirlpool).

Precursor Content in 50HL Test-Brewery

- EMB was already detected at the start of wort boiling.
- Level increased slightly through wort boiling.
- Level increased further at casting (transfer from Kettle to Whirlpool).

2017 ASBC Meeting

Level decreased after cooling.

Results and Discussion

Comparison between breweries

In Brewery A, EMB level did not decrease at the start of cooling, instead kept increasing during wort cooling.

Precursor content after boiling at Brewery A

In WHP, EMB kept almost the same level, even after the start of wort cooling.

Results and Discussion

Precursor content after boiling at Brewery A

- In WHP, EMB kept almost the same level, even after the start of wort cooling.
- \succ At the middle of wort cooling, an increase was observed.
- The result suggested that the increase occurred in the wort cooling line.
 2017 ASBC Meeting

Results and Discussion

Comparison between breweries

- In Brewery A, mixing with oxygen at the outlet of the WHP would occur
- We could specify the location in the brewhouse that affected the variability in EMB formation.

- Background
- Purpose of this Study
- Materials and Methods
- Results and Discussion
- Summary

- We monitored EMB (the precursor of 2M3MB) in the brewhouse at the test brewery and large-scale breweries.
- In hopping, boiling, and casting at all breweries, an increase in EMB level was observed.
- In cooling, test brewery and Brewery B showed decreased EMB levels, whereas at Brewery A a further increase was observed.
- Based on these results, we could specify the location in the brewhouse that affected the variability in EMB formation.

Our Goals

- To identify factors that control 2M3MB levels
- > To bring "onion-like" odor under control by changing factors

Future Work

- Control the level of precursor in the brewhouse based on these results.
- Monitor the profile of H₂S in our breweries, since this compound may affect variability in the conversion to 2M3MB.
- Identify other factors that control 2M3MB formation during fermentation.

Thank you for your attention!

Taku Irie

Production Technology Center R & D Promotion Office Asahi Breweries, Ltd. e-Mail : taku.irie@asahibeer.co.jp

