

Beer quality

Chemical, physical, and organoleptic properties of a product, that aim to be consistent

Quality control and management

All measures carried out to assure product quality, mainly driven by diverse analytical tools

(Significant) gaps in quality control?

Beer is a complex mixture of 1000s of substances covering a wide range of molecular weight, polarity, concentration. Understanding variations of beer quality on molecular basis is an ongoing challenge of brewing science.

OMICS

 collective characterization and quantification of pools of biological molecules responsible for the structure, function, and dynamics of cells/organisms/biological systems

METABOLOMICS

 analysis of organic molecules detectable in a organism / plant / cell / sample with a molecular weight typically < 1500 Da

webofknowledge.com, Search "metabolmics" + "food metabolomics"

1) instrumental analysis

1) Instrumental analysis BERLIN 0 2) data collection 4) identification use metabolite profiles to distinguish between samples 647658429238719879135681756 968163786196581376581745607 836923478978397639876397683 target 1-X 969726587565692492972989699 3) data reduction and statistics 20 10 0 select significant and metabolites as markers for -10 -20

-20

-10

0

10

targeted approaches (optional)

beer metabolomics

Autor	Year	Analytics	Statistics	Findings
Duarte et al.	2002	¹ H NMR	PCA	Distinction between lager and ale
Duarte et al.	2004	FTIR-ATR und ¹ H NMR	PCA	Distinction between lager, ale, and non alcoholic beer
Nord et al.	2004	¹ H NMR	PLS	Identification and quantification of various metabolites in beer
Lachenmeier et al.	2005	¹ H NMR	PCA, PLS	Distinction of malt types and brewing sites
Almeida et al.	2006	¹ H NMR	PCA	Distinction between brewing site and date
Khatib et al.	2006	1D und 2D ¹ H NMR	PCA	Distinction of pilsner style beers from different brands
Pope et al.	2007	DIMS/GC-ToF	PCA/CVA	Comparison of metabolic footprinting of different yeast strains
Cajka et al.	2010	SPME-GC-ToF	PLS-DA, LDA, ANN-MLP	Distinction of trappist beers vs. belgian beers via volatile fingerprints
Zhu et al.	2010	(ESI)-MS	PCA	Distinction between pale pilsner, wheat/white beer, and lager
Heuberger et al.	2012	UPLC-ESI-QToF	PCA	Effects of storage temperature on non-volatile beer components
Inui et al.	2013	GC×GC-ToF	PCA	Changes in concentrations of hop aroma components during production
Andrés-Iglesias et al.	2014	UPLC-ESI-QToF	PCA	Distinction between alcoholic/non alcoholic beer
Heuberger et al.	2016	UPLC-ESI-QToF	PCA	Possible biological markers for rapid testing of beer stability
Spevacek et al.	2016	NMR	PCA, LMM	Comparison of metabolic profile during brewing process; Comparison purine metabolism of late and dry hopped beers
Hughey et al.	2016	UPLC-ESI-QToF	PCA	Identification of differentially expressed compounds in single hop IPAs

beer metabolomics project

- the German "Federal Ministry for Economic Affairs and Energy" funds innovative, market oriented research carried out by networks of small/medium sized companies and research institutes
- targets improvement of competitiveness + economic growth

metabolic footprint

Are changes in the brewing process (here fermentation regime) properly reflected by a non-target metabolomic approach?

PCA discrimination

- based on metabolite data sets different fermentation regimes cluster
- rather high variance in biological replicates (pilot scale brewing?)

cluster heatmap

pairwise correlation heatmap

Which differences between (similar) beers can be identified by a global metabolite profiling approach?

- 1. consistency trial (4 breweries, same product, 3 months)
- 2. beer analysis by GC-MS, SPME-GC-MS, and LC-TOF-MS (targeted beer analysis, sensory analysis,...)
- 3. data analysis and visualization by PCA, identification of significant metabolites,...

sensory data

• Comparison of sensory data (5 Point scheme) applied to a single brand pilsner type beer from different production plants

PCA

• metabolite data clustered in respect to production date (month), colored ellipses describe the 50% confidence interval of the normal distribution for each group in the two-dimensional space of the PCA

PCA

• metabolite data clustered in respect to production date (month) and brewing site (1-4), colored ellipses describe the 50% confidence interval of the normal distribution for each group in the two-dimensional space of the PCA

metabolite identification, annotation, ...

variable importance score

metabolite	VIP Score	Classification
549.12711@1.5813	100.00	unknown
Glu-Ser-Val	81.54978	Peptide(tri-)
421.2424@8.9307	76.57584	unknown
Asp-His-His	75.63124	Peptide(tetra-)
485.1783@4.1378	72.55315	unknown
2-Hydroxyethanesulfonate	71.22231	Sulfonic Acids and Derivatives
Pro-Pro-Ser	69.76658	Peptide(tri-)
352.1742@6.9477	69.15368	unknown
Asn-Asn-Asn	68.39585	Peptide(tetra-)
Asp-Val-Gly-Pro	67.09589	Peptide(tetra-)
Dimethyl succinate	60.76791	Carboxylic Acids and Derivatives
5-Amino-6-ribitylamino uracil	60.64853	Monosaccharides
Tyr-Lys-Arg-Tyr	60.34157	Peptide(tetra-)
Arg-Met-Phe-Asp	56.21668	Peptide(tetra-)
Methyl 2-aminobenzoate	55.70696	Benzoic Acid and Derivatives
8-Hydroxyguanosine	54.64307	Purine Nucleosides and Analogues
Gin-Trp-Gin-Gin	51.28974	Peptide(tetra-)
Piperitoside	50.8607	Flavonoids
Phe-Tyr-Phe-Lys-Ile	50.8044	Peptide(penta-)
Phenylalanine	• metar	oolites showing significant variations
Met-Ala-His	50.06506	• •
Cys-Trp-Gly-Gly	48.88984 Detwe	en the four breweries calculated by "random
Glycerylphosphorylethanolamine	47.65788 forest	technique"
Gly-Pro-Trp	47.23474	
N6-(delta2-Isopentenyl)-adenine	45.93661	

•

44.99882

aim: rank the importance of variables in a regression or classification problem

Procyanidin B3

peptides

- 22 out of the 50 significant metabolites were peptides
- 13 peptides out of these 22 metabolites are showing the trends similar to box plots shown above
- peptides (and amino acids) were reported as significant metabolites in previous LC-MS based studies, direct correlation with beer quality are hard to draw

8-hydroxyguanosine

- 8-Hydroxyguanosine is a nucleoside formed by guanosine oxidation
- purines were reported to correlate with beer oxidation
- 5-MTA, Deoxyadenosine, and Guanine did not significantly contribute to differences between the breweries (fresh beer)

polyphenols

- Procyanidin B3 ((+)-catechin-(4α-8)-(+)-catechin) has been reported in malt, hops, and beer
- physical beer stabilty, flavor stability...

cluster analysis

differences attributed to GC analysis?

- global metabolite profiling yielded 3255 compounds ٠
- approx. 1000 metabolites were ranked with a VIP score > 0٠
- approx. 70 metabolites from HS-SPME-GC-MS ranked with a VIP score >0 •

157.0835@5.0885 (31,75) BERLIN

204.058@1.1643 (31,75)

- isobutyl isobutyrate
- isoamyl acetate
- phenylethylethanol

targeted vs. untargeted GC analysis

targeted vs. untargeted analysis

 normalized (semi-) quantitative data of both assays match (similar trends)

Assumption: targeted approach more accurate

- untargeted assay is not sensitive enough to detect differences between samples (high standard deviation of technical replicates)
- some compounds (e.g. beta-pinene) were below LOQ in targeted assay but reported by the untargeted

bridging significant gaps?

- metabolomics are indeed applicable to practical issues (comparative studies)
- LC-MS based technologies (will) surely help to understand the complex polar and non-volatile beer metabolome
- profiling of the volatile fraction is crucial (sensitivity), the quality of targeted GC-MS assays is high
- metabolomics complement the toolbox of brewing analytics / research
- compound identification remains challenging
- there is plenty of work ahead...

