

June 7, 2017

Rediscovery of *Lactobacillus pastorianus* Van Laer 1892, a beer spoilage *Lactobacillus* species named in honor of Louis Pasteur, and studies on its extraordinarily unique culturability

Quality Control Center:

<u>Koji Suzuki</u>, Masaki Shimokawa, Hiromi Yamagishi Research Laboratories for Alcohol Beverages: Shizuka Asano, Nana Yako

About 150 years ago

Franco-German War (1870-1871)

Better beer for France

Louis Pasteur Father of Microbiology

Etudes sur la bière (1876)

Discovery of beer spoilage lactic acid bacteria

Louis Pasteur Father of Microbiology A drawing of spoiled beer Etudes sur la bière (1876)

Historic achievements influenced by Pasteur

Pasteurization

Yeast culture purification (Emil Hansen 1883)

Birth of brewery laboratories

A drawing of spoiled beer Etudes sur la bière (1876)

Saccharobacillus pastorianus (Lactobacillus pastorianus Van Laer 1892)

Saccharomyces pastorianus

A Big Mystery

Almost no descriptions have been found over the past 50 years and *Lactobacillus pastorianus* mysteriously vanished in the brewing history.

A Big Mystery Where did they go?

Purpose of this study

1. To rediscover L. pastorianus Van Laer 1892

2. To characterize *L. pastorianus* so that we can detect and identify the species as a beer spoiler

Part 1 Search for *L. pastorianus* strains and its unique behavior upon primary isolation from brewing environments

According to Van Laer who isolated L. pastorianus in 1892

L. pastorianus did not grow on normal culture media. However, this species did grow on unhopped beer solidified with gelatin. The colony formation of *L. pastorianus* was extremely slow.

Later in 1930's, Shimwell found that *L. pastorianus* grew well on normal culture media and could not reproduce its unique culturability.

Lactobacillus paracollinoides, a stealth-like species

Beer agar

MRS agar (deMan, Rogosa and Sharpe)

One species fitting the original descriptions of Van Laer and the later studies by Shimwell ?

Peculiar culturability of L. paracollinoides (Suzuki et al. 2004)

Gradual adaptation process to medium environments

Stepwise adaptation to MRS broth, where degassed beer as a subculture medium was progressively replaced by MRS broth, allowed the cultivation of *L. paracollinoides* on normal culture media.

L. paracollinoides fitting the descriptions of L. pastorianus

Van Laer

Genetic comparison between *L. paracollinoides* JCM 11969^T and *L.* sp. ATCC 8291 (*L. pastorianus* Van Laer 1892)

16S rDNA sequences99.8% identical (Criteria: ca 99%)DNA-DNA hybridization81.3% homologous (Threshold: 70% or higher)IsolationBoth from beer

From a genetic standpoint, *L. pastorianus* Van Laer 1892 can be considered as synonymous with *L. paracollinoides*.

Ribotyping of *L. paracollinoides* JCM 15730 and *L.* sp. ATCC 8291 (*L. pastorianus* Van Laer 1892)

L. pastorianus Van Laer 1892 also shows an identical ribotyping profile with *L. paracollinoides* JCM 15730.

Summary 1

1. *L. paracollinoides* was found to be synonymous with *L. pastorianus* Van Laer 1892.

2. *L. pastorianus/paracollinoides* shows unique culturabilities, exhibiting both stealth and easy-to-culture mode .

Part 2 Characterization of *L. pastorianus/paracollinoides* focusing on its culturability

Culturability on beer/MRS agar with varying mixing ratios

Culturability?

Easy-to-culture mode

Stealth mode

Culturability on beer/MRS agar with varying mixing ratios

MRS contains inhibitors affecting negatively the growth of *L. pastorianus/paracollinoides*.

Identification of negative factors for the growth of *L. pastorianus/paracollinoides*

Selection of advanced beer-spoiler detection (ABD) agar as a base medium

<medium compositions=""></medium>				
MRS broth (powder)	2.61g			
Sodium acetate	0.5 g			
Cycloheximide	10mg			
Agar	15g			
Beer (pilsner-type)	1000ml			
рН 5.0				

The medium contains 0.26% MRS broth in beer and its pH is adjusted to 5.0 to facilitate the growth of hard-to-culture beer spoilers (Suzuki *et al.*, *J. Appl. Microbiol.*, 2008)

Basic experimental protocol

< Medium compositions of ABD>			
MRS broth (powder)	2.61g		
Sodium acetate	0.5g		
Cycloheximide	10mg		
Agar	15g		
Beer (pilsner-type)	1000ml		
рН 5.0			

1. Nutrient: Each ingredient was added to ABD at the level of normal medium (MRS)

2. pH: pH of ABD was adjusted between 4.7 and 5.93. Agar: Normal microbiological grade v. s. highly purified agar (agarose grade)

Effects of nutrients on the growth of JCM 11969^T

Easy-to-culture mode

Effects of nutrients on the growth of JCM 15729

Easy-to-culture mode

The growth of *L. pastorianus/paracollinoides* was inhibited by many of the nutrients supposed to foster the growth of lactic acid bacteria.

Effect of pH

pН	4.7	5.0	5.3	5.6	5.9
Stealth mode JCM 11969 ^T	5	5	11	No growth	No growth
Easy-to-culture JCM 11969 ^T	5	5	5	5	14
Stealth mode JCM 15729	5	6	8	9	12
Easy-to-culture JCM 15729	5	5	5	5	6

Time for detection is shown in days. Anaerobic incubation at 25 degree Celsius (up to 14 days) Experiments were conducted in triplicates.

Stealth mode *L. pastorianus/paracollinoides* grows optimally below pH 5.0 but its growth was considerably inhibited in the pH ranges over 5.3.

The effects of agar on the growth of JCM 11969^T

Relative colony forming units (%)

Most of the media used in the brewing industry are solidified with agar.

Summary 2

1. *L. pastorianus/paracollinoides* was sensitive to several nutrient sources supposed to facilitate the growth of lactic acid bacteria.

2. Its optimal growth pH range lies below 5.0, reflecting the pH value of beer.

3. *L. pastorianus/paracollinoides* exhibited sensitivities to agar components.

Progress of microbiological culture media

Days of Pasteur and Van Laer

Unhopped beer gelatin plate (Home-made) Gelatin for solidification Beer-based nutrient-poor medium pH below 5.0 MRS agar, Raka Ray etc. (Commercially mass-produced) Agar for solidification Nutrient rich medium pH greater than 5.4

The progress of culture media may be one of the main reasons why *L. pastorianus* mysteriously vanished after 1950s.

Part 3 Survey of the brewing environments

Survey of brewing environments

Swab sample L. paracollinoides

Recycled container (Keg beer) *L. paracollinoides*

The samples were inoculated in degassed beer and incubated anaerobically at 25 degree Celsius for up to 14 days. Only the visibly turbid beers were diluted and tested for culturability. A total of 38 beer spoilage strains were obtained.

Ubiquitous presence in the brewing environments

All the 18 *L. pastorianus/paracollinoides* strains exhibited stealth mode and did not grow on conventional media.

What does this study mean ?

L. pastorianus has been ubiquitous in brewing environments but escaped the detection by culture media for so many decades.

All the *L. pastorianus/paracollinoides* strains possess strong beer spoilage ability

	Strains	Growth in degassed beer	(days)
-	JCM 11969 ^T	+ (6)	
	JCM 15728	+ (4)	
	JCM 15729	+ (4)	
	JCM 15730	+ (4)	
5/	JCM 15731	+ (6)	
2S	Strain Lp9	+ (5)	Degassed pilsner beer
× 0	Strain Lp10	+ (4)	(pH4.2) 25 degree Celsius Inoculation: 3 x 10 ³ cells/ml
	Strain Lp11	+ (4)	moculation. 5 x 10° cens/im
	Strain Lp12	+ (4)	
	Strain Lp13	+ (4)	
	Strain Lp14	+ (4)	
	Strain Lp15	+ (4)	
	L. brevis ABBC45	+ (4)	
	L. lindneri DSM 20692	+ (5)	

L. pastorianus/ paracollinoides strains

Conclusions

1. *L. pastorianus/paracollinoides* exhibits unique culturabilities and requires a special culture medium for detection.

2. *L. pastorianus/paracollinoides* vanished after 1950s due largely to the progress of microbiological culture media.

3. *L. pastorianus/paracollinoides* is widely distributed in the brewing environments and this study helps us develop a better culture medium for the detection of this potent beer spoilage species.

Thank you for your kind attention !

