

#### Versuchs- und Lehranstalt für Brauerei in Berlin (VLB) e.V.

Scale up/down
New possibilities to close the gap between lab, pilot brewery and industrial scale



### **Overview**



- + Challenges of scale up/down
- + How is the normal process
- Our Approach construction Nanobrewery
- Trials/optimization Nanobrewery
- + Downstream process
- Scale up/down trials
- + Outlook



### Challenges of scale up/down



# Challenges of scale up/down



- Scaling down leads higher surface to volume ratio
  - + changed mass transfer  $(O_2 \uparrow \downarrow CO_2 \uparrow \downarrow volatiles \uparrow)$
  - + changed heat transfer ( cooling, heating)
- + Transfer problems by thinner pipelines
- + Unequal distribution
- Different flow dynamics
- + Hygienic design, cleaning challenges

### Challenges of scale up/down





# Scale up/down in brewing



- + Scale up/down step lead to:
  - Unknown oxygen uptake (mash/ wort/ beer transfer)
  - Unknown effectivity of DMS evaporation
  - Unknown hop yields
  - + Risk of blockage during mash transfer, lautering, wort cooling
  - + Undesired dilutions by residual water in pipes/hoses
  - + Control of wort flow during lautering
- + Typical steps in a ratio 1:100

# **Typical work flow**



- + Lab scale (??? ml- 5l)
  - + Open vessel- Erlenmeyer flask
  - Microtiter plats
  - Untypically brewing and fermentation conditions
- + Pilot scale (1hl 10 hl)
- + Industrial scale (100 hl 1000 hl)



## Our approach



## Our approach



- + Full automatization (minimize brewer's impact)
- + Nitrogen gas and degassed water application (reduces oxidation)
- + Heat supply and adjusted thermal load by oil bath (circulates in heating jackets)
- + Regulation of the lauter flow by pressure difference
- Adjust evaporation rate by reflux condenser
- + Usage of available miniplant vessels

### **Construction Nano-brewhouse**

- + Grist load: up to 1,2 kg
- + Cast wort: up to 5l
- + Oxygen free wort production
- Mainly made of glass
- + automated



ASBC Annual Meeting

June 4-7 ■ Fort Myers, Florida

### Mashtun



- + Capacity: 6I
- + Oxygen free mashing
- + Temperature control by oil bath and heating jacket
- + Measuring instruments: level, temperature



### Lautertun

- + Capacity: 61
- Oxygen free lautering
- Temperature control: oil bath and heating jackets
- + Measuring instruments: level, temperature, lauter turbidity
- + Control of wort flow: adjusting the height of wort kettle
- Specific false bottom load: 100-150 kg/m²
- no raking machine (avoid influence on filter layer)
- Lautering without pump or control valve (avoid blocking, oxygen entry)
- + Regulation by setting difference pressure





## **Lauter process**





### Wort kettle

ASBC Annual Meeting
June 4-7 ■ Fort Myers, Florida
See what SCIENCE can brew for you

- + Capacity: 6I
- + Oxygen free wort boiling
- + Temperature control by oil bath and heating jackets
- + Measuring instruments: level, temperature
- + Possibility to reduce evaporation by reflux condenser



# **Whirlpool and Cooling**



- + Capacity: 6l
- Oxygen free
- + Insulated
- Measuring instruments: temperature of cooled wort, wort turbidity
- + Counterflow wort cooler



#### **Automatization**



- + Braumat (Siemens)
- + Visualisation of process
- + Steps programmed with Step7
- + Order and recipe control
- Improved Reproducibility by automatization
- + Save measured data



# Influence of oxygen on wort colour



| Wort colour<br>[EBC] at 12%<br>original extract | Without N <sub>2</sub> atmosphere | With N <sub>2</sub> atmosphere |  |  |
|-------------------------------------------------|-----------------------------------|--------------------------------|--|--|
| Without oxygen free brewing water               | 18-20                             | 14-16                          |  |  |
| With oxygen free brewing water                  | 8-12                              | 7,5-8,1                        |  |  |

## Lautering performance- pressure difference







### **Downstream process**



## **Downstream process**





### Fermentation tubes- details







Sampling



**Pressure Fermentation** 



Yeast harvest





### Scale up/down trials



## **Recipe adaption**



- Mash program
   Slower heating up
- Mash acidification More acid used
- Wort acidification More acid used

# **Analytical Results**



|                | OG [°P] | рН   | Es [%GG] | Colour [EBC] | BU    | ABV. [%v/v] | Free Diacetyl<br>[mg/kg] | Total Diacetyl [mg/kg] |
|----------------|---------|------|----------|--------------|-------|-------------|--------------------------|------------------------|
| VLB Std        | 11,51   | 4,15 | 2,30     | 6,19         | 28    | 4,88        | 0,100                    | 0,100                  |
| Minibrau       | 11,91   | 4,22 | 2,04     | 6,88         | 25    | 5,24        | 0,067                    | 0,085                  |
| Difference [%] | 3,48    | 1,69 | 12,75    | 11,15        | 12,00 | 7,38        | 49,25                    | 17,65                  |

# **Tasting Results**





PanelCheck: Mini vs. VLB Std. little differences

## Significant differences





- 3 way Anova
- Significant differences:
- Palatefullness

### Conclusion



- + Reproducing 2hl scale in 5l brewery succeeded
- + Adjusted recipe necessary
- + Sensory analyses can't detect differences below 10%?



## Thank you for your attention!



## VLB Berlin Fl Bier- und Getränkeproduktion

Dr. Roland Pahl (pahl@vlb-berlin.org)

Dipl. Ing.Jan Biering (biering@vlb-berlin.org)

Dipl. Brm. Michel Werner (m.werner@vlb-berlin.org)



www.vlb-berlin.org



