

Bitterness, Perception of Taste and Aroma

Pattie Aron Rahr Malting June 2, 2017

Bitterness

- Bitterness Perception
- Factors that affect perception
- Sources Main components
- Sensory evaluation and techniques

Bitterness Perception

- Molecules bind to receptors on the tongue
 - Type II receptor cells (sweet, umami, bitter)
- Ligand binding site changes shape
- Interacts with a G-protein coupled receptor (GPCRs)
- G- protein activates messenger cell...cascade effect.....
- Ion channels activate and cell gradient changes
- Nerve cell stimulated
- Signals the Brain
- <u>BITTER!</u>

G – Protein Response

Type II Receptor

Bitterness – Perception Factors

- Genetics
 - Heritage 25 Taste Type II Receptors
 - Cluster of genes located on c 5p, 7q, 12 p
 - # of fungiform papillae vary by individual
 - Sex
- Age response declines with age
- **Diet** brain response change due to 'training'
- Presence of suppressants and enhancers
 - Sugar
 - Salt
 - Acids
 - Metals

Nutrients. 2014 Sep; 6(9): 3363–3381.

Bitterness Genetics and PROP

- PROP (6-propyl-2-thiouracil)
 - Bitter receptor TAS2R38
 - Linked to chromosome locus at 5p15
 - Dominant trait
 - 70% of Caucasians are sensitive
 - 90% of Asians and African Americans
 - Subgroup supertasters
 - More women than men

Nutrients. 2014 Sep; 6(9): 3363–3381.

Bitterness – Beer Contributers

- Hop Oils Oil 'burn' may enhance bitterness
- Polyphenols bitter
- **Color** (malt roast) bitter compounds
- Alcohol may enhance or reduce
- Higher pH enhances bitterness
- Mineral Content
 - Burtonization sulfate = crisp
 - Carbonate broader, harsher bitter
- Carbonation bite can enhance bitterness

2017 ASBC Meeting

- Aging decreases bitterness
- Hop Acids and their products...

Bitterness - Hop Acids

- Alpha Acids
- Beta Acids
- Isomerized alpha acids
- Reduced hop acids

Alpha Acid Analogues

Prehumulone

334

Alpha Acid	Acyl R	MW
Humulone*	CH ₂ CH(CH ₃) ₂	362
Cohumulone*	CH(CH ₃) ₂	348
Adhumulone**	CH(CH ₃)CH ₂ CH ₃	362
Prehumulone***	$CH_2CH_2CH(CH_3)_2$	376

Adhumulone

Cohumulone

Posthumulone***

Humulone

(Rigby, Bethune, *1952, **1953 and ***Verzele 1955)

CH₂CH₃

Posthumulone

%

35-70

20-65

10-15

1-10

1-3

Bitterness - Alpha Acids

-Not bitter.

-Unstable – oxidize readily in presence of oxygen, heat and light.

-Some oxidized alpha acids form hard resins that do not contribute to beer bitterness.

- Some oxidized alpha acids do contribute to bitterness: humulinones and humulinic acids.

-At 25°C humulone aqueous solubility is low ~6mg/L

-Alpha acids are relatively unsoluble in wort at pH 5, reaching a maximum of about 84 ppm when heated at pH 5.2, and even higher at pH ~6.5.

Isomerized alpha acids: Iso humulones

Isomerization

Iso-alpha acid stability

Thermal instability - Cis is thermally more stable, losses of trans occur over time

The Beta Acid Analogues

Beta Acid	Acyl R	%
Lupulone*	CH ₂ CH(CH ₃) ₂	30-55
Colupulone*	CH(CH ₃) ₂	20-55
Adlupulone**	CH(CH ₃)CH ₂ CH ₃	10-15
Prelupulone***	CH ₂ CH ₂ CH(CH ₃) ₂	1-3
Postlupulone***	CH ₂ CH ₃	?

Beta Acids

Bitterness - The Beta Acids

-Not bitter unless oxidized.

-Poorly soluble in water and wort.

-Poor solubility as pure compounds (1 g/100mL), but more soluble as a mixture

-Stable to alkaline hydrolysis in absence of oxygen.

-Susceptible to oxidation comparable to alpha acids

- Oxidation results in hulupones – products have 'undesirable?'

bitterness and can make up for loss of alpha in old hops.

Advanced Hop Acids

Reduced Iso-alpha acids (Rho)

Trans-DIHYDRO-ISOHUMULONES or Trans-RHO-ISOHUMULONES

Hexa-hydro-isocohumulones

Bitterness – Sensory Evaluation

- Bitterness and the IBU
- Bitterness and Quality
- Bitterness Intensity
- Lingering Time Intensity

Sensory and the IBU

- The IBU measurement includes:
 - Iso-alpha acids, α , β , and oxidized products:
 - Humulinones more soluble than IAA
 - Beta acid derivatives
 - Other hard resin derivatives
 - Anything soluble in isooctane that also absorbs near 275 nm under acidified conditions:
 - Phenolics: xanthohumol, flavonoids, etc.

Iso- alpha acid

OXI- Iso- alpha acid (humulinone)

Contributions to the IBU: Sensory

Sensory bitterness will vary based on hopping rates, hopping technology, age of hops, variety of hops.

Qualitative differences may not correlate to IBU

Source: WBC 2014, T. H. Shellhammer, Dry hopping contributions to bitterness 2017 ASBC Meeting

Comparison of Sensory vs. Analytical Bitterness

Bitterness Perception - Quality

- Harmonious
- Harsh
- Vegetative
- Medicinal
- Short
- Lingering

Bitterness Quality – Training Reference Types

- Iso alpha acids
 - Beer ranges from 2 ppm to 40 ppm
 - Higher ppm may occur with increased alcohol in specialty beers CH₃
- Caffeine

- Polyphenols Epicatechin, Catechin, etc
- Quinine
- Urea
- Sucrose octa-acetate

2017 ASBC Meeting

Bitterness Quality

2017 ASBC Meeting

Dimension 2 (16.8% of the variation)

Bitterness Quality

Bitterness Intensity and Time Intensity

• Applied example

Modification of perceived beer bitterness intensity, character and temporal profile by hop aroma extract

Olayide Oladokun^a, Amparo Tarrega^a, Sue James^b, Trevor Cowley^b, Frieda Dehrmann^b, Katherine Smart^b, David Cook^a, Joanne Hort^a.

https://doi.org/10.1016/j.foodres.2016.05.018

Get rights and content

Highlights

Aroma modified intensity, character and temporal profile of bitterness in beer

Bitterness Perception

Fig. 1. Spider plots of mean bitterness intensity and bitter character based on intensity ratings. Low: (13 BU) beer, Medium: (25 BU) beer and High: (42 BU) beer. L0, L1 and L2 at each BU level corresponds to hop aroma extract addition levels of 0, 245 and 490 mg/L. Significance denoted at *5% and **1% level.

Time Intensity

Fig. 4. Average time-intensity curves. Low: (13 BU) beer and High: (42 BU) beer. CoL and CoH, LL1 and HL1, LL2 and HL2 correspond to hop aroma extract addition levels of 0, 245 and 490 mg/L respectively. Significance at 5% level.

Tasting

- Base Beer +10 ppm of Iso
- Base Beer +30 ppm of Iso
- Base Beer +30 ppm of Iso and hop aroma

