

Hop Breeding

Why, how, and the impact of new variety evaluation and selection

Jason Perrault

Acreage Trend: aroma versus alpha

VARIETY TYPE 🔻

Average Yields (# per acre): aroma versus alpha

VARIETY TYPE

-800

-1000

Note: Perle removed as no '15 production was reported

Average Yields: deviations from the mean

Deviation from Average Yield (mean of all years) in lb per acre

Varietal Impact

- Physiology and development are genetic.
- Crop management is varietal dependant.
- There is a strong genetic x environmental interaction.
- The goal: Realize the maximum genetic potential.
- The problem: Maximum genetic potential cannot be reached in all environments.
- Answer is breeding and selection

How important is this?

- Hop Supply Chain: Each link on the supply chain affects subsequent links.
 - The efficiency of a hop has a corresponding impact on the chain.

Breeding Objectives

• High yielding high alpha cultivars.

- Super
- Varietal
- High yielding aroma cultivars.
 - Improvements on the classics
 - Specialty / dual purpose
- Goal is to combine the above with:
 - Pest and disease resistance.
 - Good storage stability.
 - Desirable brewing characteristics (i.e. low cohumulone, specific oil components).

NBC 2016 Web Stewing Concerns

Humulus Iupulus: Complexity

- "Hops"
- Dioecious, perennial, climbing vine
- Indigenous to the Northern Hemisphere
 - Origins in Europe:
 - H. lupulus var. lupulus
 - Origins in Asia (mainly Japan):
 - H. lupulus var. cordifolius
 - Origins in North America:
 - H. lupulus var. pubescens
 - H. lupulus var. neomexicanus
 - H. lupulus var. lupuloides

Humulus Iupulus: Complexity

- Dioecious (male and female plants).
 - Genetically complex.
 - Obligate out-crossers, cannot self pollinate.
 - High level of diversity (heterozygosity).
 - Hybrid vigor (Heterosis).
 - Seed propagation not possible.
- Annual above ground, perennial below.
- Easily clonally propagated- traits can be "fixed" in single generation.
 - Each new variety results from a single plant.
 - Millions from one.

Mature Female "Cones"

Male flowers at anthesis

Male flowers at anthesis

Hop Breeding Scheme

Year 1: Parental selection and crossing

 Based on breeding objectives

Year 2: Early selection

- Greenhouse screening
- High density field screening
- 10% selection rate

Years 3,4,5: Intermediate selection

- Remaining plants transplanted to 18' trellis
- 1% selection rate

Year 11+: Commercialization

Years 9,10,11: Elite Trials

- Selections expanded to commercial trials
- Selection rate: ?

Years 6,7,8: Advanced selection

- Expand selections to multi plant plots
- 2% selection rate

Population Dynamics

Year 1: Parental selection and crossing

 Based on breeding objectives

Year 2: Early selection

- Start 40,000
- 10% selection rate
- End 4000

Years 3,4,5: Intermediate selection

- Start 4,000
- 1% selection rate
- End 40

Year 11+: Commercialization

Years 9,10,11: Elite Trials

- Overall rate: 0.005%
- Start 2
- Selection rate: ?

Years 6,7,8: Advanced selection

- Start 40
- 3% selection rate
- End 1.2

Crossing

Left: Collection of male flowers for isolation of pollen. Above: Application of pollen to a bagged receptive female.

From Crosses to seedlings

greenhouse for Powdery Mildew, then planted to the field.

Cultivar Release: Year 11

- After 8 10 years of evaluation, release is considered.
 - Private varieties: PVP begins.
- The work is far from over, success is dependent on:
 - Continued agronomic success.
 - Grower acceptance, usually short term.
 - Brewer acceptance, long term.

Future Trends in Hop Breeding

- Molecular research
 - Marker assisted selection
 - Gene mapping
 - Gene functionality
- Non-brewery usage
- Continuing conversion to new varieties
 - Driven by disease pressure, storage issues, basic economic pressures, and continued growth in craft brewing.
 - Increases focus on AROMA

Acreage Trend: aroma versus alpha

VARIETY TYPE 🔻

Impact of Breeding: Top Varieties

Of the top 10

- 4 released since '00
- 28% of top 10
- Including other >40%

USDA lists 41 varieties in '16

19 released since '00

Rank	Variety	2015 Acres
1	Cascade	6790
2	CTZ	5323
3	Other	4909
4	Centennial	4401
5	Simcoe® (YCR 14)	3306
6	Citra® (HBC 394)	2993
7	MosaicTM (HBC 369)	1800
8	Chinook	1787
9	Nugget	1686
10	SummitTM	1620

U.S. Hop Acreage

U.S. Hop Production (x1000)

Thank you

jason@selecthops.com

All acreage and production data can be found at www.usahops.org