118

Flash Pasteurization: how long is the optimal heat-holding time for achieving the best beer quality?

Abstract

Flash pasteurization of beer is an important tool for dependable shelf-life extension. In conjunction with a correspondingly hygiene-enhanced filler, flash pasteurization is a product-friendly alternative to tunnel and chamber pasteurizers.

A flash pasteurizer's efficacy in stabilizing turbidity and taste, for example in wheat beer, is also gaining steadily in perceived importance.

Established figures for pasteurization units (PUs) are used to determine the dimensions for the heat-holding sections (30 seconds) and the heat-holding temperatures $(66^{\circ}C - 72^{\circ}C / 147 - 162 F)$.

The question then arises: Do these traditional parameters (utilizing the analytical and technological options now available) actually represent the optimum

Flash pasteurization is essentially focused on killing beverage-specific microorganisms. In the case of cloudy beers, the main consideration is stabilizing turbidity by means of rigorously targeted protein denaturation. With filtered beers, it is precisely this turbidity formation that must be prevented. In every case, pasteurization must only lead to a minimized effect on sensory perceptions and ageing stability.

This new procedure, using a constant heat-holding section of a defined length, enables both: 1) cloudy beers to be produced with improved ageing & turbidity stability and 2) filtered beers without the risk of pasteurizationrelated turbidity. For the equally important task of microbiological stabilization, it is immaterial in this context what the individual time and temperature parameters are. The crucial factor for the kill-off kinetics is only the time/temperature pairing involved.

The result of the work is a "hot-short process" that enables the heat-holding sections currently measuring about 50 meters (164 ft) to be shortened to as little as 10 % of the traditional length. When this is done, then – depending on the type of beer and focus (turbidity stabilization) – the temperature must be increased to 78°C to 83°C (172 – 181 F) in order to achieve identical PU values. The most important task was to find the maximum temperature for eliminating pasteurization-related turbidity in filtered beers and to be able to assure turbidity stabilization by reaching a denaturation temperature when producing cloudy beers still with the same flash pasteurizer.

Filtered and cloudy beers were compared in both processes in regards to the effect on turbidity stability, foaming characteristics, microbiology, thermal stress and ageing stability.

The "hot-short" process exhibited shows significant technological and commercial advantages. A difference in the thermal stress induced by the higher temperatures could not be found by quantifying free radicals by means of electron spin resonance measurements (T-500 value). Besides the technological advantages covered in this presentation regarding beer quality, a shorter heat-holding section also offers commercial advantages. Reduced capital investment, downsized footprint, fewer mixing phases and product losses, plus enhanced microbiological safety are some of the commercially quantifiable benefits that can be achieved.

Target of the

Finding optimal pr achieve:

- higher beer quali
- haze & aging stab
- compact units wit

Possibility? **Reduction of the he**

The PE-value, his calculation and the reacti sec. is not necessary for the microbiologica

6 sec. x

Results therr

Aim:

-> less thermal imp

heat indicate

Result:

World Brewing Congress 2016

(Dr. Roland Feilner, Henri Fischer)

work	Results haze stability				
rocess parameters (time & temperature) in the flash pasteurizer to	Aim: -> no haze formation through high temperatures in filtrated beers -> define a maximum temperature and less heat-holding time				
oility to unfiltered beers th low mixing phases -> pressure drops -> product losses	Table 1: haze indicators in comparison 6 sec. at 78.4°C (173.1F) 30 sec. at 72°C (161.6F)				
	haze (760 nm / 700 nm) [extinction] 0.065 / 0.007 0.065 / 0.0065				
$DE = + \times 1.202 \text{ PT} - 60^{\circ}\text{C}$	haze 90° / 25° [EBC] 0°C 0.28 / 0.10 0.26 / 0.10				
eat-holding time from 30 sec to e.g. 4-6 sec.	haze g 90° / 25° [EBC] 20°C 0.21 / 0.06 0.20 / 0.07				
$D = -\frac{1}{t} \log \left(\frac{N}{N_0} \right)^{-1}$ Result: The basic for the PE-value is the D-value (time who is necessary to reduce the microorganism load about one power of ten). So the amount of reduction is only proportional to the relationship temperature and time.	Result: -> no haze formation through temperatures < 78.5°C (173.3F) at 6 sec Results aging stability				
PE _{Beer} = t x 1,393 ^{PT - 60°C}	Aim:				
$1,393 \ ^{77,2^{\circ}C - 60^{\circ}C} = 30 \text{ sec. x } 1,393 \ ^{72^{\circ}C - 60^{\circ}C}$ $28 \text{ PU} = 28 \text{ PU}$	-> better product quality				
mal impact pact through shorter heat-holding time	aging & oxygen indicators brand "filtrated Pils" 160 140 1000 1000 100				
Cors brand "filtrated Pils" $8,4^{\circ}C = 45 \text{ PU}$ $30 \text{ sec. } 73,6^{\circ}C = 45 \text{ PU}$ 5,32 6,34 6,34 6,34 6,34 6,34 6,34 6,32 6,30 6,34 6,34 6,32 6,30 6,34 6,34 6,32 6,30 6,34 6,34 6,32 6,30 6,34 6,32 6,30 6,34 6,32 6,34 6,32 6,34 6,32 6,34 6,32 6,30 6,34 6,32 6,30 6,34 6,32 6,30 6,34 6,32 6,30 6,38 6,34 6,32 6,39 6,	PE aging indicators aging indicators oxygen indicators aged -> less aging and oxygen indicators comparison long/warm vs. sho				
Image: Image	Results wheat beer				
tors fresh heat indicators aged 6,18	 Aim: -> wheat beer must heat up to 80°C (176F) to guarantee a well haze stabilization 				
30 seconds 6 seconds	-> for microbiological safety 150 – 220 PUs are necessary -> with a standard heat-holding tube, an over-pasteurization is always the result				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 2: Temp- Table 3: Temp-				

	100 % Flow				
	50 % Flow				
Result:					
	-> exact P				
	thermal in				

BAX-Wert: 37,6 min*L/mgSO

SO₂-Wert (Regression): 3,3 mg/L

SO₂-Wert (CFA): 4,0 mg/L

-3 -2 -1 0 1 2 3 4 5 6 D_2 -Konzentration [mg/L] SO₂-Zugabe [mg/L]

-> less heat indicators and higher antioxidative stability through shorter heat holding time!

EAP-Werte [min] 123 194 276 346

0 50 100 150 200 250 300 350 400 450 500 550 600

SO₂-Wert (CFA): 4,1 mg/L

-3 -2 -1 0 1 2 3 4 5 6 O₂-Konzentration [mg/L] SO₂-Zugabe [mg/L]

SO₂-Konzentration [mg/L]

SO, -Wert (Regression): 3,4 mg/

ators in rt/hot

Time	Temp- erature	beer-PU		Table 3:	Time	Temp- erature	beer-PU
30.0	80.0	378		100 % Flow	6	83,2	220
60.0	80.0	757		50 % Flow	12	81,1	220

PU values AND colloidal stabilization can be realized WITHOUT too much impact

August 13-17, 2016 **Denver, Colorado, U.S.A.**

Summary

-> 30 seconds heat-holding time is no longer state of the art (flash pasteurizer).

-> 6 seconds at higher temperature shows better product quality with same microbiological safety.

-> the biggest advantage is for cloudy beers because a good colloidal stability is achieved as well as a reduction of the thermal impact is realized

Mechanical benefits:

-> less material, less welding, less space, less components etc.

Process benefits:

-> less mixing phases, less product losses, less pressure drop, lower microbiological risk because of less differences between fastest and slowest particle

Author information

Dr. Roland Feilner, author Krones AG Böhmerwaldstr. 5 **D-93073 Neutraubling**

Phone. +49 9401 70-1830 Mail: roland.feilner@krones.com Mobile: +49 151 18806573

Henri Fischer, presenter Krones, Inc. PO Box 321801 Franklin, WI Phone: +1 414 409 4740 Mail: henri.fischer@kronesusa.com

