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Summary 
Process control is the next frontier in a QA/QC program. Understanding 

variation in your process from a raw material, people, process, and 

equipment sources can provide insight into issues before they happen. 

This workshop is geared toward those already with a basic knowledge 

of process control and statistics. In this advanced session, industry 

specialists will showcase the tools and methods that are aimed at 

understanding how well your process meets requirements and methods 

to improve your processes. Speakers will cover how to execute process 

capability studies and statistics used to quantify this, normality testing, 

t-tests, analysis of variance (ANOVA), and correlation analysis.  An 

introduction into measurements systems analysis will also be provided.  

This workshop will teach you how to effectively understand sources of 

variation in your processes so that these can be addressed.   
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Course Pre-Requisites  

• SPC Fundamentals  

   X-Bar &R 

   IX & MR  

   Common cause vs Special Cause Variation 

   Basic Statistics 

 

• Spreadsheet based techniques 

   Determining Grand Averages 

   Determining Standard Deviations  
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Course Overview  

• Process Capability Studies & How to Improve 

 

 

 

 

• Measurement Systems Analysis  
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Software Overview 
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Process Capability Analysis Overview  

• Normal Distribution basics 

• Lyapunov’s Theorum 

• Y=F(X) & DMAIC  

• Assumptions on Process Capability Studies 

   X~iid N(,2)  

• Determination of indices (Pp, Ppk, Ppm) 

• Capability 6 Six Pack 

• DMAIC Road Map to Process Improvement 

SPC, t-test, ANOVA, Correlation 

• Deriving Functional Limits on the X-vars 
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Normal Distribution Basics  

• Gaussian Distribution 

 

 

 

 

 

 

 

• Two Parameters:   

        Central Tendency   

        Spread (Variation) 
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Normal Distribution Basics 
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Normal Distribution Basics  

• Estimation of  

 

 

 

 

• Estimation of  
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Normal Distribution Basics  
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Normal Distribution Basics  
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Y=F(X): Underlying principle of 6 Sigma  

   
Consider the Taylor Series Expansion of a function f(x1,x2) about a point (x*,y*) 
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Systems Thinking (SIPOC Model) 

• In general, the output variable is a complex function of many input 
variables (x-vars).  Some input variables we know quite well from brewing 
science and some we don’t. 

• The x-vars are not necessarily fixed (e.g. mash pH) and they also have a 
random component to them which may not exhibit Gaussian behavior 

• So why is it justified to assume that the output variable (Y-var) are 
normally distributed? 

Process 

Output 

(Y-var) 

(Wort maltose levels) (Mashing) 

Inputs 

(x-var) 

x1: (Malt -amylase) 

x2: (Sacch. rest 

temperature) 
x3: (Sacch rest 

time) 
x4: (Mash pH) 

x5: (Mash Ca++) 

xp: (other vars) 



The Science of Beer 

Lyapunov’s Theorem (1901)  

• Brewer’s condensed version: 

 

No matter what the underlying distribution of the 

input variables are, provided that they remain stable, 

the output variables will tend to have a Gaussian or 

bell shaped curve associated with behavior. 
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Assumptions  

• Y ~ iid N(,2) 

• Y – output variable we want to study 

• ~  -  “is distributed as”  

• First ‘i’:  Independence  

• ‘id’:  Identically Distributed  

• N(,2):  data comes from the same normal 

population that has mean  and standard 

deviation  
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Assumptions 

Assumption Validated by  Comment 

Independence Correlation Analysis 

within a subgroup and 

time series analysis  

Not typically performed but heavily 

violated in our industry  

(TPOs, Fills, CO2) 

Identically 

Distributed 

SPC Charts  

(X-bar & R) 

(IX & MR) 

If SPC charts exhibit out of control 

conditions, technically a Process 

Capability Study is invalid; 

however, there is still merit in 

generating the Capability 

Histogram / 6 Pack 

Normal 

Random 

Variables 

Normality Tests: 

a) Anderson-Darling 

b) Ryan-Joiner 

c) Kolmogorov-Smirnoff  

If processes are in-control but 

exhibit non-normal behaviour it is 

likely additional sources of 

variation are present (filler-valve to 

valve)  
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First Generation Index: Process Potential (Cp)  

3 

 

3 

Process Spread = 6 σ 

LNPL UNPL 

USL LSL 
Specification Tolerance Width 

 
6

LSLUSL
Cp






The Science of Beer 

Calculating Indices – Short & Long Term  

• Cp  (Short Term) 

 

 

 

 

• Pp  (Long Term) 
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Calculating Indices - Example 

• Fills Data (12oz (355.0 ml) Cans) n=4 

• LSL = 350.0 mls      USL = 360.0 mls 

• Short Term and Long Term Stdevs next page 
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Calculating Indices  

Given    S = 1.838 mls  
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Calculating Indices - Example 

• Fills Data (12oz (355.0 ml) Cans) 

• LSL = 350.0 mls      USL = 360.0 mls 

• Short Term and Long Term Stdevs next page 
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What is a Good Pp ? 
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Calculating Indices  

• Pp/Cp only measures “Potential” 

 

 

USL LSL 
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Calculating Indices – Ppk/Cpk  

• Compare the distance  

from the mean to  

each specification,  

normalized  

to 3 standard  

deviations 
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2nd  Generation Index: Ppk & Cpk   
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2nd  Generation Index: Ppk & Cpk   
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Introduction to the Capability 6 Pack  
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Testing Normality  

The Anderson-Darling test is defined as:  

H0:  The data follow a specified distribution.  

Ha:  The data do not follow the specified distribution  

 

Test 

Statistc:  

The Anderson-Darling test statistic is defined as  

    

   where  

    
 

 

F is the cumulative distribution function of the specified 

distribution. Note that the Yi are the ordered data.  

Blah Blah Blah Blah Blah ……………….. 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm
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Testing Normality  

• P-value Is the only thing to worry about  

Rule:  if p-val <              then assume   
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Testing Normality   

30 

Watch out for Outliers !  

Data looks to be normally distributed with some outliers, 
and this most likely influenced the AD test statistic. 
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What are Good Ppk/Cpks  

• If Ppk> 1.33 then it  

can be demonstrated  

that the process average  

is 4 standard deviations 

(long term) away to the  

nearest specification 

 

 

• Ratio Ppk/Cpk:  

 

 

LSL USL 
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One-Sided Specifications   

• Common to have only one specification in 

brewing (Eg SO2, VDKs, TPOs) 

• If a specification does not exist then do not 

calculate the one side index and assume it is 

very large ()  
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Example One Sided Specifications 

Ppk = 0.75 

Ppk = 1.33 

Ppk = 0.86 
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Sample Size Requirements  

 Guirguis & Rodriguez (1992) derived exact lower 
confidence limits for Cpk.  An exact 100  % 
lower confidence limit for Ppk is the solution for 
CK that satisfies the solution to the following 
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Improving Process Capability   

• Examples  

 

 

• Statistical Tools to Understand Sources of 

Variation  

 

- t-tests for mean centering 

- ANOVA 

- Correlation & Regression 

- Setting Functional Limits 

-  I/O QFRs   

 



The Science of Beer 

Example 1: Unstable Process  
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Example 1:  Unstable Process  
• In this situation, the process is being influenced by 

special cause variation  

 

• Because of this determining any process capability 

indices or attempting to adjust the mean is meaningless 

•  

 

 

 

• You should always first understand what are the root 

causes of this excessive variation is and eliminate out 
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Example 2:  Off Target   

• It does appear the process is off center; 

however, do we know if this is statistically 

significant?    

 

 

 

 

 

 

• Use Gosset’s t-test 

http://www.google.com/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAwQjRwwAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGuinness&ei=KQ5nVfPCOoG-sAXA_4DoCw&psig=AFQjCNFakpCg0851nzholBZxKka_B_ZXDQ&ust=1432903594048883
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Example 2:  Off Target  

• t-Statistic 

 

 

 

• 0 = Target value we desire 

 

 

 

• Software p-value  
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Example 2:  Off Target  

• 0 = 355.00 mls 

• S = 1.838 mls.     

• n=120 

•  

 

 

 

• Excel QI Macro Demo 

• Δ:    

• Software p-value  
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Example 2:  Off Target  

• 0 = 355.00 mls 

• S = 1.838 mls.     

• n=120 

•  

 

 

 

• Excel QI Macro Demo 

• Δ:    

• Software p-value  

85.6

120
838.1

00.35515.356
* 0 






































n
S

X
t



mlsX 15.356

15.100.35515.3560  Xshift



The Science of Beer 

Example 3:  High Variability     
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Example 3:  High Variability     

• Critical X-var Error Propagation 
Y-

var 

X-

var 
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Example 3:  High Variability  

• X-variables that exhibit high degree of 

variability and known to influence the 

output of the process need to be controlled 

tighter: 

a) PID Controls 

b) SOPs  

c) Raw material specifications 

d) consolidation of suppliers 
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Example 4:  Valve to Valve Variability 

Upper tail appears to have 

humps (multi-modal) and a 

skew to the right side of the 

distribution 
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Example 4:  Valve to Valve Variability  

• When multiple process streams feed one 

general process, tools such as One Way 

ANalysis Of Variance (ANOVA) can be used to 

data mine if certain streams are sources of 

variability 
Eg:  Fermentation Vessel Type, Capper Elements, Filler Valves, 

Seamer Heads 

 

 

• Individual Plots by Head  

• Example Using Minitab  TPO by Valve.MPJ 

differsoneleastatH

jiH

A

ji





:

,:0 



The Science of Beer 

Example 4:  ANOVA   

• F-Test  

 

 

 

 

 

 

 

 

• p-value  
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Example 4:  Valve to Valve Variability  

Worst 

Valves: 

71 

45 

50 

37 

Best 

Valves: 

139 

138 

129 

116 
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Example 5:  Y=F(X)   

• EOF SO2  

• Preliminary Capability Study on Y 

• Collect data on suspect X’s  

• Study Correlations 

• Optimization  

• Setting Functional Limits 

• Gage Errors 
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Example 5:  Y=F(X)   
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Example 5:  Y = F(X)  

• What is required to get this process capability 

improved?  
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Example 5:  Y = F(X)  



The Science of Beer 

Example:  Y = F(X)  

• Correlation Analysis using Software 

• Graph Y (SO2) versus Continuous X-vars 

• Correlation Coefficient 

 

 

 

 

 

 

• Test Statistic 
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Example 5:  Y = F(X)  

• Exercises:  QI Macros Correlation 

CORREL Zn DO Trub FAN Viability SO4 OG C18:2 EOF SO2 

Zn 1.000 -0.208 0.201 -0.418 0.239 0.525 -0.001 -0.063 -0.180 

DO -0.208 1.000 0.367 0.218 -0.052 -0.100 -0.046 -0.014 -0.530 

Trub 0.201 0.367 1.000 -0.029 -0.038 -0.008 -0.077 0.214 -0.697 

FAN -0.418 0.218 -0.029 1.000 0.233 0.025 -0.079 0.069 -0.023 

Viability 0.239 -0.052 -0.038 0.233 1.000 0.367 -0.314 0.231 -0.234 

SO4 0.525 -0.100 -0.008 0.025 0.367 1.000 -0.037 -0.284 0.035 

OG -0.001 -0.046 -0.077 -0.079 -0.314 -0.037 1.000 -0.092 0.165 

C18:2 -0.063 -0.014 0.214 0.069 0.231 -0.284 -0.092 1.000 -0.484 

EOF SO2 -0.180 -0.530 -0.697 -0.023 -0.234 0.035 0.165 -0.484 1.000 

p Values Zn DO Trub FAN Viability SO4 OG C18:2 EOF SO2 

DO 0.318   0.071 0.295 0.805 0.633 0.826 0.946 0.006 

Trub 0.334 0.071   0.889 0.858 0.971 0.713 0.304 0.000 

FAN 0.037 0.295 0.889   0.263 0.906 0.707 0.744 0.913 

Viability 0.250 0.805 0.858 0.263   0.071 0.127 0.266 0.259 

SO4 0.007 0.633 0.971 0.906 0.071   0.861 0.169 0.870 

OG 0.996 0.826 0.713 0.707 0.127 0.861   0.661 0.430 

C18:2 0.765 0.946 0.304 0.744 0.266 0.169 0.661   0.014 

EOF SO2 0.389 0.006 0.000 0.913 0.259 0.870 0.430 0.014   
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Example 5:  Y = F(X) 
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Example 5:  Y = F(X)  

• SO2 vs C18:2 

y = -3.9678x + 21.179 

0.00
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20.00

25.00

30.00

35.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
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Linear (EOF SO2)



The Science of Beer 
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OALike = 6.17018 + 0.0516014 2-METH-1-PRO

Regression

95% CI

Example of Determining Functional Limits

LSL=6.8

USL=7.8

LFL= 15.5 UFL= 25.5

Example 5:  Y = F(X)  

• Breyfoggle’s Approach 
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Setting Functional Limits  

• Simple Linear regression models yield a basic 

relationship   

                         y = mx + b 

• If we know the tolerances for y, we can solve for x.  For 

example  
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Key Point: 

If we plug in the USLY we 

can get a specification for X  

If we have a target for Y then 

we can derive a target for X  
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Setting Functional Limits   

Y-

var 

X-

var 

USL 

LSL 

Target 

We can project 

down to the x-axis 

and arrive at 

specifications  
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Example 5:  Y = F(X)   

• Mathematical Approach 

 

 

 

 

 

• Tolerances:   
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Example 5:  Y = F(X)   

• Exercise 

USLY = 17.5 

Y = 10.0  

x = -3.97 

b = 21.18 

 

Determine Tolerances:   
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Example 5:  Y = F(X)   

• Exercise 

USLY = 17.5 

Y = 10.0  

x = -3.97 

b = 21.18 

 

Determine Tolerances:   
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Example 5:  Y = F(X)   

• Review Process Capability of Critical X-vars 
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Example 5:  Y = F(X)   

• Trub Functional Limits  
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Example 5:  Y = F(X) 

• X-variable SPC  

• Center Line set as Target 
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Example 5:  Y = F(X)   

• Two categorical variables 

   Whirlpool    &    QC Tech   

 

 

• To understand if there are potential relationships 

we apply _____________ 

   

• Minitab exercise 
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Example 5:  Y = F(X)   

• Whirlpool Effect  

 

 

 

 

 



The Science of Beer 

Example 5:  Y = F(X)   

Technician Effect  

 

 

 

 

 

Tim WoodBetty Jean

35

30

25

20

15

10

5

0

QC Tech

E
O

F 
S

O
2

Individual Value Plot of EOF SO2 vs QC Tech

S = 5.421   R-Sq = 16.08%   R-Sq(adj) = 12.43%

Total    24  805.4

Error    23  675.9   29.4

QC Tech   1  129.5  129.5  4.41  0.047

Source   DF     SS     MS     F      P

One-way ANOVA: EOF SO2 versus QC Tech 
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Input / Output Matrix - Example   



The Science of Beer 

Input / Output Matrix- Exampe  
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Measurement Systems Analysis  

• Gage Repeatability and Reproducibility Studies 

 

 

• Repeatability:   

That component of gage error that is the direct 

result of instrument variability 

 

 

• Reproducibility 

That component of gage error that is the direct 

result of technician to technician differences   
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Measurement Systems Analysis  

• True Case Study 

True Result (15.0)  
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Measurement Systems Analysis 

Accuracy 

X 
X 
X 
X X 

X 

X 
X 
X 
X X 

X 

X 
X 

X 

X 

X 

X 

X 

X 

X 

Accurate?  Accurate?  Accurate?  

Key Point:  Accuracy deals with the 
Measurement Systems ability to be  
close, on average, to the actual value 

Bias 
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Measurement Systems Analysis  

• Repeatable  

X 
X 
X 
X X 

X 

X 
X 
X 
X X 

X X 
X 

X 

X 

X 

X 

X 

X 

X 

Key Point:  Repeatability deals with 
the Measurement System’s ability to 
measure over numerous trials within a 
limited range of variation  
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Measurement Systems Analysis  

• Reproducibility  

1 

3 4 

6 
5 

2 
1 

3 

4 

6 5 

2 

Key Point:  Reproducibility deals with 
the Measurement Systems ability to 
reproduce results between labs, 
instruments, or analysts (people)  

Note: each # represents a QC Technician 
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Measurement Systems Analysis  

• Mathematical Model 
 
 
 
 
 
 
 

• Assume 
 ~ IID N(μ,σ2) 

 XY
Lab Result Actual Unknown Value 

from the process 
Error introduced by the 

measurement system 

Actual X 

Lab Result Y 

 
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A Measurement SIPOC System Model 

VARIABILITY IN 

BUFFERING 

SOLUTIONS 

VIBRATION 

TEMPERATURE 

PRESSURE 

SAMPLE PREP 

INPUT VARIABLES THAT  DRIVE  

COMMON CAUSE VARIATION OUTPUT = 

MEASUREMENT 

RESULT 

 
Y 

SPECIAL CAUSES THAT 

COMPRIMISE INTEGRITY 

OF RESULTS 

INTERNAL STANDARD 

ADDITION 

FAULTY SENSOR 

INCORRECT 

CALIBRATION 

BETTY JEAN  

NOT FOLLOWING 

SOPs 

Mesurement 

Process 
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Measurement Systems Analysis  

• Variance Components 

 

 

 

 

• Experimental Design:  Gage R&R Study 

estimates these components of error by having 

the same sample measured a few times each by 

a few different operators, and  

conducting that for a representative 

set of samples that would encompass the 

natural process variation 
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Measurement Systems Analysis  

• Methods of statistical analysis  

 

A)  X-Bar & R Method (Traditional) 

 

B)  ANOVA GLM - Method (Montgomery) 

 

• Standard Deviation Components are determined 

by the R-bar/d2 method 
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Measurement Systems Analysis  

• X-bar & R Method 

 

 

 

 

 

 

 

Betty Jean Tim Wood Eric Samp 

Sample Trial 1 Trial2 Trial3 

Average-

Appraiser 1 Range1 Trial 1 Trial2 Trial3 

Average-

Appraiser 2 Range2 Trial 1 Trial2 Trial3 

Average-

Appraiser 

3 Range3 

P1 10.2 10.3 10.1 10.20 0.2 9.8 9.9 10.1 9.93 0.3 9.7 9.9 10.2 9.93 0.5 

P2 7.6 7.9 8.2 7.90 0.6 8.3 8.1 7.8 8.07 0.5 8 8.2 7.9 8.03 0.3 

P3 12.3 12.7 12.4 12.47 0.4 11.8 11.5 11.9 11.73 0.4 11.7 11.6 12 11.77 0.4 

P4 11.1 11.3 11.4 11.27 0.3 10.9 10.8 10.6 10.77 0.3 10.6 10.9 10.7 10.73 0.3 

P5 9.5 9.7 9.5 9.57 0.2 9.3 9.1 9.4 9.27 0.3 9.3 9.4 9.5 9.40 0.2 

P6 10.6 10.4 10.3 10.43 0.3 10.3 10.2 10.4 10.30 0.2 10.2 10.4 10.2 10.27 0.2 

P7 8.3 8.2 8.5 8.33 0.3 7.8 8.1 8 7.97 0.3 8 8.2 7.8 8.00 0.4 

P8 10.3 10.2 10.5 10.33 0.3 10.3 9.9 10.1 10.10 0.4 9.8 10 10.2 10.00 0.4 

P9 11.3 11.2 11 11.17 0.3 10.9 10.8 11.1 10.93 0.3 11 11.2 10.8 11.00 0.4 

P10 15.8 15.4 15.2 15.47 0.6 14.1 14.3 14.4 14.27 0.3 14.1 14.2 14.5 14.27 0.4 

X-bar 1 R-bar1     Xbar2 Rbar2 Xbar3 Rbar3 

10.71 0.35 10.33 0.33 10.34 0.35 
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Measurement Systems Analysis  

• Determining the components of Error  

 

 

 

 

 

• Determining Gage Error  
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Measurement Systems Analysis  

• Guarantee: 

 

• R Chart   

 

 

 

 

 

 

 

56.0*2  gage
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Measurement Systems Analysis  

• X-bar Chart 

 

 

 

 

 

 

 
Is Out of Control a bad thing here ?   
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Measurement Systems Analysis  

• Interaction Check 

 

 

 

 

 

 

 

6

8

10

12

14

16

18

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

A
v
e
ra

g
g

e
 

Part 

Part by Appraiser Plot (Stacked) 

Average-Appraiser 1

Average-Appraiser 2

Average-Appraiser 3

UCL

XCL

LCL

Appraiser 1 Appraiser 3 

Observe if each 

line is parallel 



The Science of Beer 

Measurement Systems Analysis  

• What do we do with the data? 

Q1:  Is my measurement system adequate for 

the tolerances I am working to in the process? 

 

 

 

 

If P/T > 30% then ……………… 

  

 

 

 

 

 

 

Note:  Careful Review of the ratio                 will  
 
direct us towards where most of the effort is 
required to improve overall gage error   

repeat
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Measurement Systems Analysis   

• Q2:  How adequate is my instrument from 

discriminating between process variation and 

instrument variation? 
Variances (not standard deviations) 

are additive just like sides of a triangle 

 

 

 

 

• Intra-class correlation coefficient 

σ2
data 

σ2
process 

σ2
gage 

data

process




 

As ρ  1.0  No Gage Error Exists !!!!  
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• Consider an example where we test a few 

samples from our process 

 

• Lets suppose we retested each of these 

samples  

 

 

 

 

• Plotted Retest vs Test on an X-Y Scatter 

Measurement Systems Analysis  

Test Retest 

19.60 20.20 

21.30 21.00 

20.40 20.90 

18.90 19.60 

20.80 20.40 

18.50 18.70 

20.40 20.70 

21.60 21.90 

20.30 20.00 

18.60 18.90 
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Discrimination Ratio 

1 represents length of the major axis 

and corresponds to the true product  

variation, σproduct.  

  2 represents the 

length of the minor 

axis and 

corresponds to test 

– retest 

error,  

σgage 

 

2

1




RD



The Science of Beer 

Discrimination Ratio 
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In this form, we can take the information 

from both process capability studies and 

gage studies and calculate Dr directly  

  

This ratio compares true product 

variation to the test-retest error  
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Discrimination Ratio 

 

  
 Each square is 2 units long 

and corresponds to the range 

of values we would expect in 

one dimension or the other 

due to gage error 

 Squares such as these define 

regions within which variation 

is obscured within 

measurement error making 

discrimination difficult  

Therefore the total number of squares that can cover the ellipse 

can be inteprreted as the number of product categories within 

the variability observed in the data from the process  
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Measurement Systems Analysis  

 

 

 

 

 

If DR = 2.0   

If DR = 3.0  

If DR > 4.0  

If DR < 2.0  
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Measurement Systems Analysis  

• What can we do if our DR < 2.0 ? 

 

• ASBC Method 3:  Ruggedness Testing 

 - what are the critical X-vars using DOE 

 

• Average of n-measurements 
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Measurement Systems Analysis  

• Why is it important ? 

 

 

 

 

• In reality there are two components of variability 

associated with our process data 

       1.  Actual process   2. Gage Error 
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Measurement Systems Analysis – Roadmap to DMAIC  
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SUMMARY  

• Assumptions in a Process Capability Study 

 

• How do we check for Identically Distributed data 

 

• How to we check for Normality 

 

• What is the difference between Ppk and Cpk 

 

• What is considered a good Ppk number? 
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SUMMARY  

• If your Ppk is not sufficient what is the first thing 

you must assess? 

 

• How do you test if your process is on-target? 

 

• How do you test if a process stream may have a 

different mean than the others 

 

• Y=F(X) – what does this mean 
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SUMMARY  

• If your Ppk is not sufficient what is the first thing 

you must assess? 

 

• How do you test if your process is on-target? 

 

• How do you test if a process stream may have a 

different mean than the others 

 

• Y=F(X) – what does this mean 
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Summary    

• How do we test if continuous X-variables 

influence the output of the process 

 

• Functional Limits? 

 

• How do we test if categorical X-variables 

influence the output of the process 

 

• If we control the ______ we will control the ____  
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Summary    

• Why is a gage capability study important? 

 

• When should you conduct one? 

 

• What are the components of gage error? 

 

• What does the discrimination ratio tell us? 

 

• What is a good Dr? 
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Thank You 

eric.samp@millercoors.com 


