

Building a Quality Program Based on Micro

The Journey from Tribal Knowledge to Solid Science ASBC Annual Conference June 14, 2015 Eric Jorgenson Quality Manager, Highland Brewing Co. ericj@highlandbrewing.com

The March of Progress

What this workshop is all about

- GMP will take you far. Challenge your assumptions!
- Transition from intuitive decision-making to databased decision-making
- Objective measurements over instinct
- Always use controls <u>and trust your data</u>!
- A how-to guide for setting up your brewing quality program

Why have a micro program?

- All about cleanliness
- Brewery cleanliness is priority #2

- (safety is #1)

- Prevent beer spoilage and control fermentation
- Out-of-control microbial contamination can be profoundly damaging to your business
 - Startups: limited short-term fallout, word-of-mouth, reputation for bad beer at cost to future growth
 - Established breweries are talking recall could cost millions!
 - Dumping beer time, effort, materials, energy down the drain
 - Hard-stop on production until source found and eliminated

Stepping Up Your Micro Program

- Intro
 - Microscope, cell counts and viability/vitality
- Basic
 - Basic selective media, basic plating, ATP swabs for spot-checking CIP
- Intermediate
 - Membrane filtration
 - Basic regimen of selective media and general growth media
 - Anaerobic
 - Classical microbial ID
 - Robust data analysis
 - In-house yeast propagation
- Expert
 - Robust regimen of selective media and general growth media
 - Anaerobic + aerobic incubation
 - Bioprospecting
 - Modern microbial ID techniques (PCR, sequencing, MALDI-TOF, etc.)
 - In-house cryogenic yeast masters

Intro

• Microscope

- 40x objective
- Hemocytometer
- Viability/vitality dye
 - Citrate methylene blue, membrane permeability, industry standard, good consistency
 - Alternative: Trypan blue, membrane permeability, slightly better color distinction
 - Alkaline methylene blue, reduction potential, poor consistency
 - Alkaline methylene violet, reduction potential, best consistency

Basic

- Start getting into cleanliness testing see ASBC webinar "introduction to brewing microbiology"
- Simplest, easiest selective media
 - HLP, screens for lactobacillus and pediococcus
- ATP swabs
 - verifies removal of organic material by CIP prior to sanitization
- Basic plating on growth media (spread-plate technique)
 - Very low sensitivity (only 0.1mL sample per plate)

Intermediate

- Microscope with 100x objective and oil immersion lens
 - Can see bacteria
- Membrane filtration
 - High sensitivity (20-250mL sample)
- Basic selective media and general growth media regimen
 - Anaerobic incubation capability
- Classic microbial ID techniques
 - Gram stain
 - Catalase test
 - Oxidase test
- In-house yeast propagation
 - Cold storage of slants

Membrane Filtration

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Membrane Filtration

- High sensitivity
 - 20-250mL sample per plate
 - 200-2,500 times more than spread-plate method!
- Millipore Sterifil makes cups with a lid
 - Helps if you don't have laminar flow hood or clean room
 - Currently achieving 95% accurate negative controls in a completely nonsterile environment
 - Relatively cheap. Assemble, autoclave, vacuum-filter.

Media

- High differential capabilities easy colony distinction, acid indicator
- UBA
 - Beer-specific general growth media
 very limited colony distinction
- WLN
 - Great yeast colony differentiation and acid indicator. Can select against some bacteria, not as good
 bacterial colony distinction
- 🕁 HLI
 - Great lacto/pedio selection
 - PIKA fast-orange
 - Very versatile spoiler detection

- Modified MRS
 - Great pectinatus selection
 LCSM
 - Great wild yeast selection
 - LWYM
 - Doesn't work well
- y Lysine
 - Great wild yeast selection
- YMA
 - Great for yeast propagations
- TTC Overlay
 - Great for detecting RD mutants
- SMMP
 - Great megasphaera/pectinatus selection

Classic Microbial ID

- Catalase test
 - Detects catalase enzyme on cell's surface
 - Protects from oxidative damage
- Oxidase test
 - Detects cytochrome oxidase
 - Key to respiration, aerobic metabolism

Classic Microbial ID

- Gram stain
 - Differential stain based on structure of cell wall
 - Gram positive thick peptidoglycan layer
 - Gram negative thin peptidoglycan layer

Classic Microbial ID

ID	Morphology	Growth Pattern	Gram	Cat	Ox
Acetobacter	rod/ellipsoid	singly, pairs, chains	-	+	-
Enterobacter	rod	pleomorphic	-	+	-
Glucanobacter	rod	pairs, chains	-	+	-
Lactobacillus	rod	Singly, pairs	+	-	-
Lactococcus	cocci	chains	+	-	-
Megasphaera	cocci	pairs, chains	-	-	-
Leuconostoc	cocci	chains	+	-	-
Pectinatus	curved rod	singly, pairs	-	-	-
Pediococcus	cocci	tetrads	+	-	-
Staphylococcus	cocci	clusters	+	+	-
Wild yeast	round, ovoid	pseudo-hyphae	+	+	+
Zymomonas	short, plump rods	pairs	-	+	-
Kocuria	cocci	tetrads, clusters	+	+	+

The Science of Beer

The Science of Beer

- Data analysis goal: transition from reactive \rightarrow proactive
- Reactive: hard to use micro as QC. Incubation time puts you at a disadvantage.
- Spoiler reaction plan: hold, force age, extra analysis (3rd party ID?), destroy/release, assess spread
- Proactive: use other microbes as indicators to identify hotspots; QA/prevention
- Very difficult to quantify an organic system
 - CFU's matter
 - Species matter
 - Variety of microbes matter
 - Acid production, spoiler-type characteristics matter

- Make a histogram; example categories below
 - 0: Perfect perfectly clean
 - 1: Negligible few CFU, single harmless organism
 - 2: Minor few CFU, several species / handful of CFU, single harmless organism
 - 3: Moderate minor acid production, significant CFU, or multiple species
 - 4: Severe significant acid production, significant CFU, and spoiler-esque characteristics
 - 5: Hold confirmed beer spoiler

Expert

- Robust regimen of selective media and general growth media
 - Anaerobic + aerobic incubation
 - SDA/SDA+, LCSM/Lysine, modified MRS, HLP/Pika, TTC overlay
- Modern detection and ID
 - PCR
 - Sequencing
 - MALDI-TOF
- Colony isolation/bioprospecting
- In-house cryogenic yeast masters

Modern Microbial ID

- PCR
 - Highly sensitive
 - Cannot ID everything, just +/- for what the kit is designed to find
 - Good kits will get you specieslevel ID for positives
 - Many kits still require incubation
 - Be smart when buying your kit you need internal controls for each reaction well. Your dilution still matters!
 - Ease vs. functionality
 - Control, melting curves, etc.

Modern Microbial ID

- Sequencing
 - Species- or even strain-level ID
 - Run against genome database for matches

Modern Microbial ID

- MALDI-TOF MS
 - Matrix-assisted laser desorption/ionization-time of flight mass spectrometry
 - Species- or strain-level ID for anything in database

HOW MALDI-TOF works

- 1. The target slide is prepared and introduced to a high-vacuum environment.
- 2. A precise laser burst ionizes the sample.
- 3. A "cloud" of proteins is released and accelerated by an electric charge.
- 4. After passing through the ring electrode, the proteins' Time of Flight is recorded using a formula from the time recorded.

5. Proteins are detected with a sensor to create a spectrum that represents the protein makeup of each sample.

References

- Smart KA., Chambers KM, Lambert I, Jenkins C. 1999. Use of Methylene Violet Staining Procedures to Determine Yeast Viability and Vitality. Journal of the ASBC. 57(1), Oxford, UK.
- Priest, F.G., Campbell, Ian. 2002. Brewing Microbiology. 3rd Edition. Kluwer Academic/Plenum Publishers, New York, NY. International Centre for Brewing and Distilling, Herriot-Watt University.
- Matoulkova D, Kosar K. 2012. Rapid, Simple, and Specific Cultivation-Based Method of Detection of *Pectinatus* spp. In Brewery Samples. Journal of the ASBC. 70(1). Prague, Czech Republic.
- Lee, S.Y. 1994. SMMP A Medium for Selective Isolation of *Megasphaera* and *Pectinatus* from the Brewery. Journal of the ASBC. 52(3). Golden, CO.

Images

- Evolution of fermentation understanding "march of progress"
 - <u>http://res.freestockphotos.biz/pictures/15/15807-illustration-of-a-silhouette-of-a-laboratory-researcher-pv.jpg</u>
 - <u>http://i.istockimg.com/file_thumbview_approve/18804737/3/stock-illustration-18804737-alcoholic-and-trump-silhouette.jpg</u>
 - <u>http://i.istockimg.com/file_thumbview_approve/11230078/6/stock-illustration-11230078-man-with-glass-drinking-silhouettes.jpg</u>
 - <u>http://static3.depositphotos.com/1004525/180/v/950/depositphotos_1807077-Man-with-a-bottle-drinking-silhouettes.jpg</u>
- Spread-plate technique
 - http://intranet.tdmu.edu.ua/data/kafedra/internal/micbio/classes_stud/en/pharm/prov_pharm/ptn/Microbiology%20with%20basis%20immunology/2/Lesson%203. %20The%20main%20methods,%20principles%20and%20steps%20of%20isolation%20of%20bacteria%E2%80%99s%20pure%20cultures.files/image006.jpg
- Quadrant streak technique
 - http://upload.wikimedia.org/wikipedia/commons/9/93/Legionella_Plate_01.png
- Membrane filtration technique
 - <u>http://academic.pgcc.edu/~kroberts/Lecture/Chapter%206/06-22_MembraneFilter_L.jpg</u>
- Oxidase Test
 - http://www.labstuff.nl/contents/media/886200webf_000.jpg
- Catalase Test
 - <u>http://www.microbelibrary.org/library/laboratory+test/3226-catalase-test-protocol</u>
- Gram Stain
 - <u>http://faculty.mc3.edu/jearl/ML/3-10.jpg</u>
 - <u>https://chemtips.files.wordpress.com/2012/10/bacterial-membranes.jpg</u>
- Cell counting/Viability
 - http://braukaiser.com/blog/wp-content/uploads/2013/05/WLP036_airAccess_day6_airlock.jpg
- DNA
 - http://en.wikipedia.org/wiki/DNA#/media/File:A-DNA,_B-DNA_and_Z-DNA.png
- PCR
 - <u>https://antisensescienceblog.wordpress.com/2013/12/04/a-cornerstone-of-molecular-biology-the-pcr-reaction</u>
- Sequencing
 - <u>http://www.ohsu.edu/xd/research/centers-institutes/vollum/images/vollum_dnacore_1.jpg</u>

Thank you!

- <a>ericj@highlandbrewing.com
- Next up: Karen Fortmann, Ph.D.
 3rd party validation

