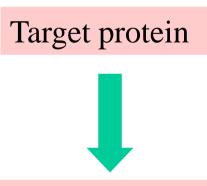


Establishing a new quantitative method for *Fusarium* hydrophobins using LC/MS/MS

Kumiko INOMOTO, Norio DOI, Susumu MASUDA, Masayuki AIZAWA / Asahi Breweries, Ltd., Japan)

[Introduction]


Hydrophobin (HFB), an amphiphilic low-molecular protein produced by filamentous fungi that infect barley and malt, is main cause of beer primary gushing. HFB produced by Fusarium fungi are especially known for their tendency to induce gushing. It has been reported that, $\sim 3 \mu g/L$ of such HFB in beer can cause gushing¹). Previously, the ELISA method using polyclonal antibody was reported¹⁾. In order to evaluate HFB content more accurately, highly specific quantification of HFB is required. Using UPLCtriple quadrupole tandem mass spectrometry (LC/MS/MS), we established a highly specific and sensitive analysis that quantified the target HFB produced by *Fusarium graminearum*.

Method

- < HFB analysis using LC/MS/MS >
- [The feature]

Since quantification is based on the mass of the peptide fragments specific to the target protein, highly sensitive and specific quantification is possible.

Selection of target fragments

We chose HFB produced by *Fusarium graminearum*. <Because> A typical species that infects barley has strong ability to induce gushing.

Based on the amino acid sequence of the target protein, the peptide fragments with a specific and strong signal were selected.

[Peptide Selection Criteria²)]

- •Length between 6 and 16 amino acids
- No posttranslational modifications
- •No single nucleotide polymorphism

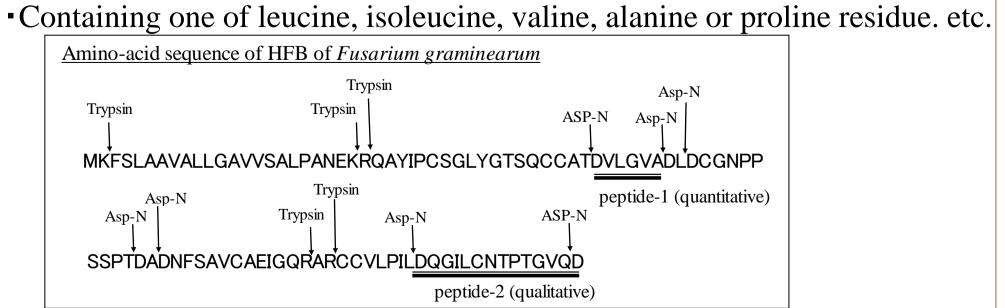
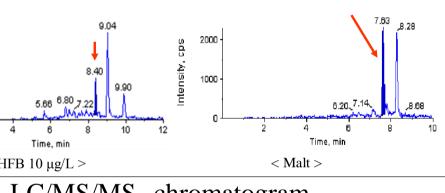



Figure 1: The estimated cleavage site using Trypsin + Asp-N

2015 ASBC Annual Meeting

2. LC/MS/MS analysis ① Sample preparation				[Result] 1. Validation of the method for quantitative determination of peptide-1						
[Beer]	[Malt]		Table 2: Validation of beer analysis							
Sample 20 µL ← Add I.S.	5 g of the fine flou $\downarrow \leftarrow 60\%$ Eth		Linearity	Detection limit [*] (µg/L)	Quantitation limit [*] (μ g/L)	Repeatability (%)	Interday variation (%)			
(Stable isotope labeled-peptide)	Extraction (30°C, 20		0.9998	0.8	2.0	4.8	5.1			
→ Dithiothreitol				Table 3: Validation of malt analysis						
30 min (56°C)	 ✔ Centrifugation ↓ (Supernatant fraction) The same method of beer 		Linearity	Detection limit [*]	Quantitation limit [*]	Repeatability	Interday variation			
$\downarrow \leftarrow$ Iodoacetamide				(µg/g malt)	(µg/g malt)	(%)	(%)			
30 min			0.9990	0.05	0.12	8.0	11.5			
$\downarrow \leftarrow$ Trypsin + Asp-N				*) Converted to HFB concentration < Repeatability : n=6 Interday variation : n=6, 3days >						
$24 h (37^{\circ}C)$ \downarrow Clean up (SPE C18)				5127 4000 5.66 0 2 4000 5.66 2 4000 5.66 10 2 4000 5.66 10 5.66	9.04 9.04 8.40 9.90	7.63 8.28 6.20,7.14 6 8 10				
\downarrow					$\frac{\text{Time, min}}{<\text{Beer} + \text{HFB 10 } \mu\text{g/L} >} < \text{Malt} >$					
LC/MS/MS analysis	LC/MS/MS analysis					Figure 2: LC/MS/MS chromatogram				
② LC/MS/MS conditions [UPLC analytical conditions] LC : SHIMADZU Nexera X2				 The analytical sensitivity and precision of peptide-1 were satisfactory for both beer and malt. * The HFB-producing species detected by this method Table 4: The HFB-producing species estimated by the combination of peptide-1 and peptide-2 						
Column : L-column2 ODS (2.1 mm I.D. x 50 mm, 2 µm, CERI) Mobile phase : A : 0.1% Formic acid B : Acetonitrile				<u> </u>		B-producing speci				
Flow rate : 0.3 mL/min Gradient min (A/B) : 0 (95/5), 30 (50/50), 32 (5/95), 35 (95/5) injection : 20 μL [MS analytical conditions] MS : Sciex API 4000				f only peptide-1	Trichoderma reesei , Tr Neurospora crassa , Cla Cryphonectria parasitic	aviceps fusiformis				
				f only peptide-2	F. poae, F. oxysporum					
				1 1	F. graminearum, F. cu F. fujikuroi, F. pseudog	graminearum , F. d	**			
Ionization : ESI Positive	 * HFB Name : FOQG_13743 ** HFB Name : FOVG_15013, FOXB_00066, FOWG_12166, Trihydrophobin 									
Table 1:MS analytical conditionsPrecursor ionProduct ion			Table 5: T	ypical species that	t causes beer gushing no	t detected by this 1	method			
	$\frac{DP(V)^{*}}{CE(V)^{*}}$	$CXP(V)^*$			e HFB-producing specie					
Peptide-1 (Quantitative) 573.4 484.5 385.2	81 23 29	20		<i>F. avenaceum</i> , <i>Nigrospora</i> sp., <i>Penicillium</i> sp., <i>Aspergillus</i> sp. etc.						
Pentide_2 243.9	47	6		BLAST search results for the sequences of species registered in the NCBI database. Parts in the red : Producing species that strongly induces gushing in beer ¹⁾⁵⁾ .						
(Qualitative) 759.8 301.2	96 47	10			indicates the possib	oility of molds s	such as <i>Fusarium</i>			
*) DP (Declustering potential), CE (Collision e < Gushing Test > We prepared a microbrew beer based on the and conducted a gushing test according to	 and <i>Trichoderma</i>. Detection of both peptide-1 and peptide-2 allows for the estimation of six species belonging to the genus <i>Fusarium</i>. Detection of only peptide-2 allows for the estimation of two species belonging to the genus <i>Fusarium</i>. 									

Table 6: Th	e results of	HFB analysis of m	Ĩ	
Sample No.	Area	Gushing Test	Peptide-1	Peptide-2
		(mL/200 mL)	HFB (µg/g malt)	Detection
Sample-1		101	0.57	\bigcirc
Sample-2		45	trace	\bigcirc
Sample-3		40	0.97	\bigcirc
Sample-4		20	0.43	\bigcirc
Sample-5		11	0.20	
Sample-6	-	7	N.D.	
Sample-7	Europe	7	0.20	
Sample-8	-	3	0.39	\bigcirc
Sample-9		1	0.52	\bigcirc
Sample-10		0	0.14	
Sample-11		0	N.D.	
Sample-12	-	0	N.D.	
Sample-13		0	trace	
Sample-14		96	N.D.	
Sample-15	North	71	0.24	
Sample-16	America	19	N.D.	
Sample-17		0	N.D.	

T	he results of	HFB ana	alysis of malt sa	ample			
	Table 6: Th	ne results of	HFB analysis of m	alt sample			
	Sample No.	Area	Gushing Test	Peptide-1	Peptide-2		
	Sample No.	Alca	(mL/200 mL)	HFB (μg/g malt)	Detection		
	Sample-1		101	0.57	\bigcirc		
	Sample-2		45	trace	\bigcirc		
	Sample-3		40	0.97	\bigcirc		
	Sample-4		20	0.43	\bigcirc		
	Sample-5		11	0.20			
	Sample-6		7	N.D.			
	Sample-7	Europe	7	0.20			
	Sample-8		3	0.39	\bigcirc		
	Sample-9		1	0.52	\bigcirc		
	Sample-10		0	0.14			
	Sample-11		0	N.D.			
	Sample-12		0	N.D.			
	Sample-13		0	trace			
	Sample-14		96	N.D.			
	Sample-15	North	71	0.24			
	Sample-16	America	19	N.D.			
	Sample-17		0	N.D.			
	N.D. : Lower than the detection limit (0.05 μ g/g malt) trace : Lower than the quantitation limit (0.12 μ g/g malt)						
	trace : Lower than the quantitation limit (0.12 μ g/g malt) O : Detection of peptide-2						
	Presence of target HFB was confirmed through detection of peptide						
		e-2 in the malt samples.					
I		European malts with peptide-1 tended to exhibit gushing. Some typ					
	North American malts exhibited gushing in the absence of target H						
	By addition of other target HFBs, this method will be able to detect						
	larger variety of HFBs produced by fungi that induce gushing.						
	[Conclusion]						
ן	Using LC/MS	S/MS we	established a high	shly specific and se	ensitive and		
	•		-				
	that quantified the target HFB produced by <i>Fusarium graminearum</i> .						
	Measurement of peptide-1 and peptide-2 enabled the detection of HI						
	producing species.						
	European malts with peptide-1 tended to exhibit gushing.						
r	This method allowed for the quantitative analysis of HFB in beer and						
ä	and the analytical results aided in the estimation of the HFB-produci						
species. This method can be used to improve the quality of beer and							
	associated with primary gushing.						
ľ R	[References] (1)Sarlin, T., et al.; J. Inst. Brew., 111(2), 105–111, 2005 (2)Kamiie, I., et al.; Pharm. Res., 25, 1469-1483, 2008						

2015 ASBC Annual Meeting

June 14–17, 2015 La Quinta Resort and Club La Quinta, CA

Asahi e-mail:kumiko.inomoto@asahibeer.co.jp

de-1 and

pes of FB.

nalysis IFB-

nd malt, cing l malt