

Very high gravity brewing: effects of the processes on fermentation in 30 ° Plato wort

Yasuhiro Muraoka

SAPPORO BREWERIES LTD. Frontier Laboratories of Value Creation

Fermentation in 30 ° Plato wort is likely to complete within eight days

Outline

- I. Introduction
- II. Results
 - Fermentative efficiency by combination of agitation and aeration
 - Effects of those processes on beer quality
- III. Summary

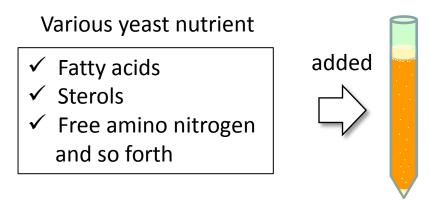
Outline

- I. Introduction
- II. Results
 - Fermentative efficiency by combination of agitation and aeration
 - Effects of those processes on beer quality
- III. Summary

What is high gravity brewing (HGB)?

Increases productivity without expanding existing brewing facilities

High gravity brewing: 16-18 ° Plato Very high gravity brewing: 20-30 ° Plato


The Science of Beer

What are the disadvantages?

- Poor fermentation performance
- Flavor profile changes
- Decreasing of beer foam stability

To overcome poor fermentation performance

Maintain yeast performance

- > Determination of the optimal oxygenation of initial wort
- > Isolation of yeast improved fermentation performance

Few study about effects of processes on fermentation

Objectives of this study

- Investigation of fermentative efficiency by combination of agitation and aeration
- Understanding effects of these processes on beer quality

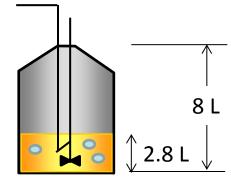
Why agitation and aeration?

Increases contact frequency of yeast and nutrient by agitation

Enhances tolerance of yeast to ethanol stress by aeration

Increases free ergosterol content in yeast by aeration

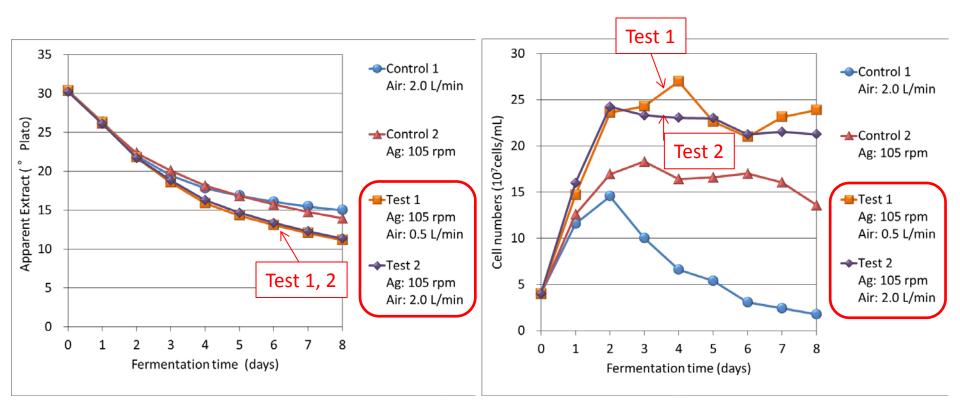
\mathbf{r}


We examined whether fermentative efficiency can be improved

Outline

- I. Introduction
- II. Results
 - Fermentative efficiency by combination of agitation and aeration
 - Effects of those processes on beer quality
- III. Summary

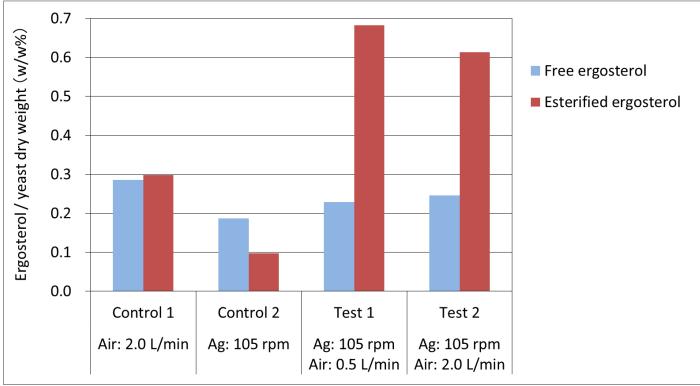
2.8 L-scale fermentation test


Wort	All-malt 12 ° Plato wort added corn syrup
Wort gravity	30 ° Plato
Yeast	Bottom-fermenting yeast W34/70
Temperature	15 ° C (59 ° F)

Jar fermentor

	Pitching rate	Aeration		Agitation	
	(cells/mL)	Supply (L/min)	Time (days)	Condition (rpm)	Time (days)
Control 1		2.0	four	-	-
Control 2	4.0 x 10 ⁷	-	-	105	eight
Test 1		0.5	four	105	eight
Test 2		2.0			

2.8 L-scale fermentation of 30 ° Plato wort


Fermentative efficiency was improved by combination of agitation and aeration (Test 1, 2)

Alcohol, OG, RE and AE at the end of fermentation

		Control 1 Air: 2.0 L/min	Control 2 Ag: 105 rpm	Test 1 Ag: 105 rpm Air: 0.5 L/min	Test 2 Ag: 105 rpm Air: 2.0 L/min
Alcohol	v/v%	9.48	10.04	11.43	11.15
Original gravity	° Plato	30.15	30.14	29.81	29.57
Real extract	w/v%	19.09	18.17	15.54	15.66
Apparent extract	w/w%	14.84	13.87	11.09	11.28

It was possible to produce up to 11 % alcohol by both agitation and aeration within eight days (Test 1, 2)

Free and esterified ergosterol content in yeast at the end of fermentation

Free ergosterol is localized at the plasma membrane Esterified ergosterol is stored in the lipid granule

The amount of free ergosterol was similar among those

Summary: fermentative efficiency by combination of agitation and aeration

Free ergosterol content in yeast was similar among those

This result may not be accounted for increasing the ethanol tolerance

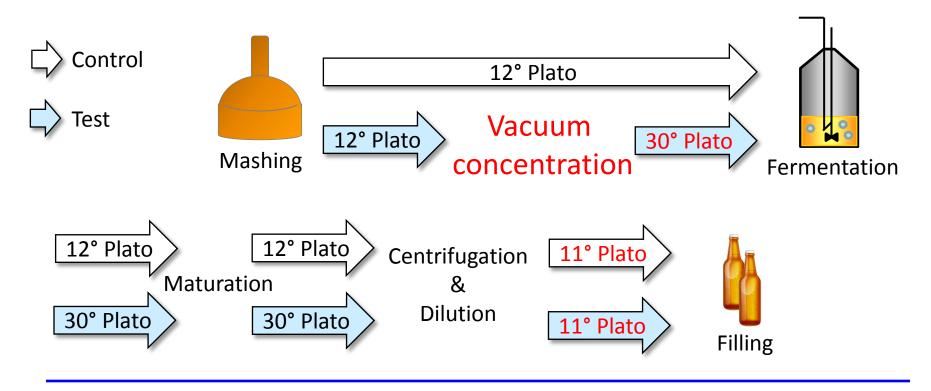
Yeast grew effectively by the synergy of agitation and aeration

Improved fermentative efficiency

Outline

I. Introduction

II. Results


- Fermentative efficiency by combination of agitation and aeration
- Effects of those processes on beer quality

III. Summary

Very high gravity brewing using vacuum concentrated all-malt wort

Objective:

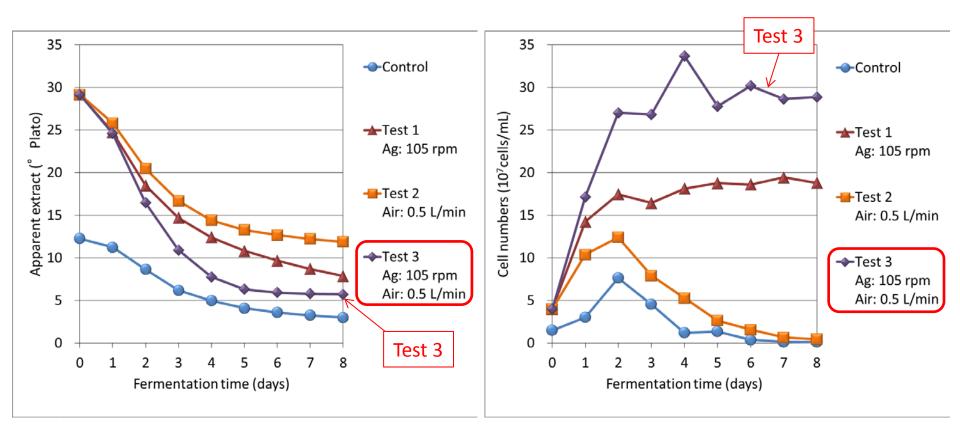
To investigate effects of agitation and aeration during fermentation on beer quality

Results of wort analysis

Vacuum concentrated all-malt wort

		١	
		Control	Test
Wort gravity	°Plato	12.25	29.14
FAN	mg/L	235	581
Zinc	ppb	138	406
IBU	-	42.4	91.5

Wort was concentrated to about 2.5 times compared to the control

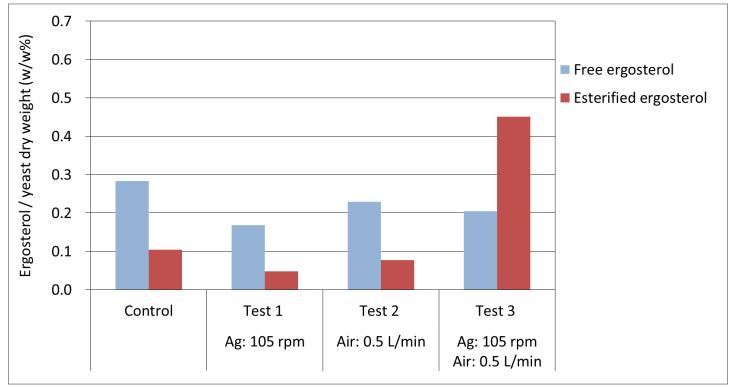

2.8 L-scale fermentation test

Wort	All-malt type	
Wort gravity	Control : 12 ° Plato	
	Test 1, 2, 3 : 30 ° Plato	
Yeast	Bottom-fermenting yeast W34/70	8 L
Temperature	Control : 12 ° C (53.6 ° F)	○ ↓ ○ ↓ 2.8 L ↓
	Test 1, 2, 3 : 15 ° C (59 ° F)	Jar fermentor

	Wort	Pitching	Aeration		Agitation	
Gravity (° Plato) (c		Rate (cells/mL)	Supply (L/min)	Time (days)	Condition (rpm)	Time (days)
Control	12	1.5 x 10 ⁷	-	-	-	-
Test 1			-	-	105	eight
Test 2	30	4.0 x 10 ⁷	0.5	four	-	-
Test 3		0.5		105	eight	

Test 1, 2 and 3 were used vacuum concentrated all-malt wort

Results of 2.8 L-scale fermentation

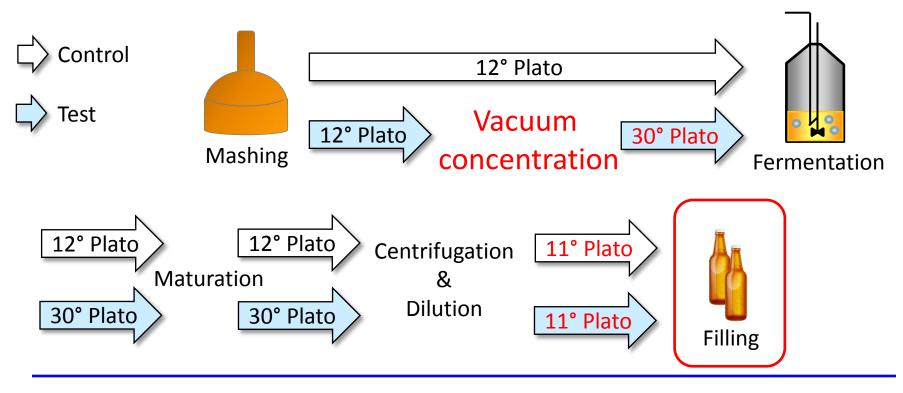

Fermentative efficiency was improved by combination of agitation and aeration (Test 3)

Alcohol, OG, RE and AE at the end of fermentation

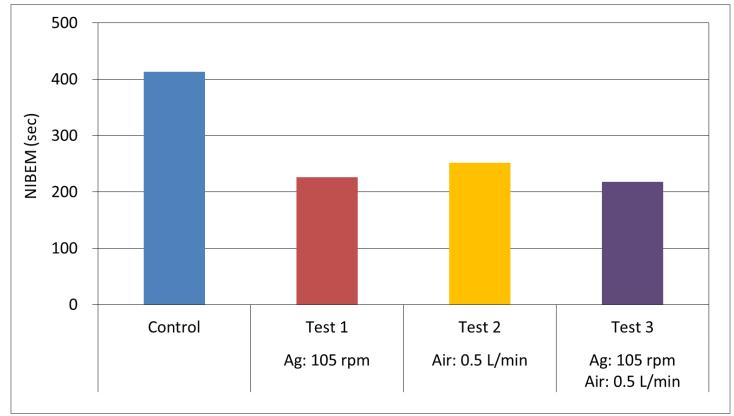
		Control	Test 1 Ag: 105 rpm	Test 2 Air: 0.5 L/min	Test 3 Ag: 105 rpm Air: 0.5 L/min
Alcohol	v/v%	5.19	12.88	10.82	13.84
Original gravity	° Plato	12.48	29.06	29.09	28.90
Real extract	w/v%	4.71	12.24	15.57	10.48
Apparent extract	w/w%	2.77	7.62	11.29	5.68

It was possible to produce up to 13 % alcohol by both agitation and aeration within eight days (Test 3)

Free and esterified ergosterol content in yeast at the end of fermentation

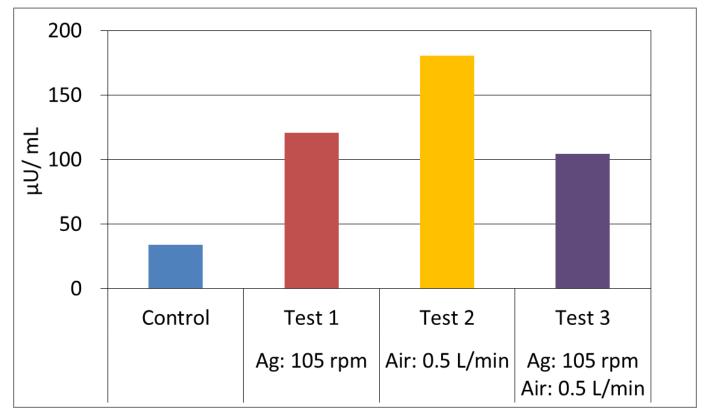

Free ergosterol is localized at the plasma membrane Esterified ergosterol is stored in the lipid granule

The amount of free ergosterol was similar among those

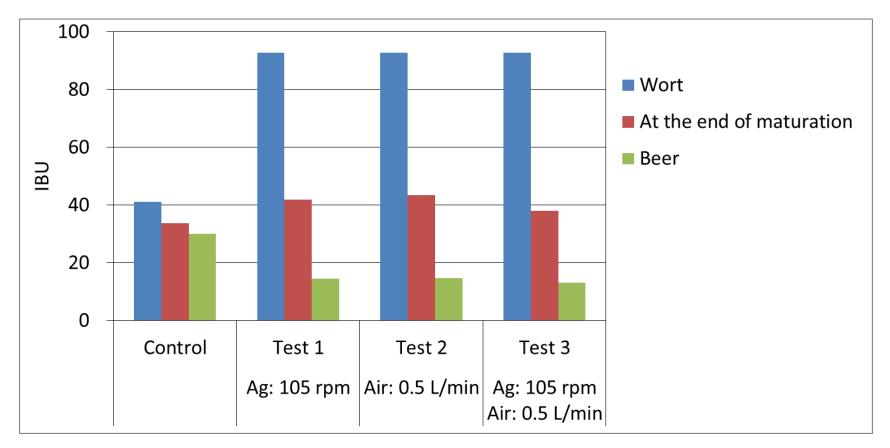

Very high gravity brewing using vacuum concentrated all-malt wort

Objective:

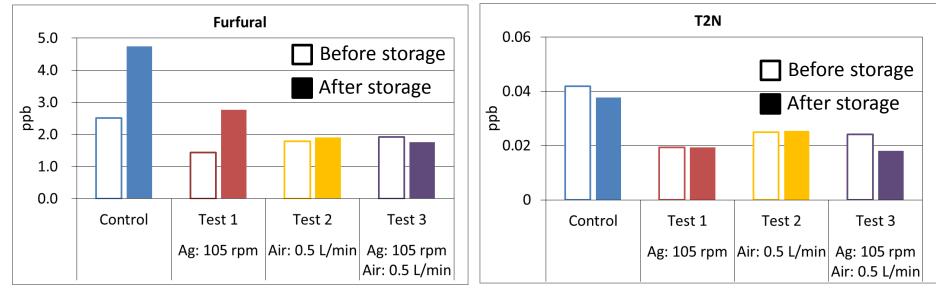
To investigate effects of agitation and aeration during fermentation on beer quality



Effect of very high gravity brewing on beer foam stability


NIBEM on beer decreased by very high gravity brewing

Extracellular PrA (Proteinase A) activity at the end of maturation


Extracellular PrA level increased by very high gravity brewing

Change of IBU from wort to beer

IBU of beer decreased by very high gravity brewing compared to the control

Effect of agitation and aeration during fermentation on beer flavor stability

Beers stored for one month at 20 ° C (68 ° F)

Agitation and aeration may not influence on beer flavor stability

Outline

- I. Introduction
- II. Results
 - Fermentative efficiency by combination of agitation and aeration
 - Effects of those processes on beer quality

III. Summary

Summary

- Very high gravity brewing fermentation is likely to achieve within a shorter period of time because yeast grows effectively by the synergy of agitation and aeration.
- NIBEM on beer might be decreased because extracellular PrA level increased and IBU decreased by very high gravity brewing. We will investigate proteins associated with foam stability.
- Agitation and aeration during fermentation may not influence on beer flavor stability.

We conclude that combination of agitation and aeration is useful for very high gravity brewing fermentation.

Thank you for your attention **SAPPORO**