Master Brewers Association of the Americas

Dedicated to the technology of brewing.

MBAA Brewing Fundamentals Track 2014 Brewing Summit Hop Quality

Daniel C. Sharp
PhD Student
Brewing Science Lab
Oregon State University

The Challenge of Hops

- Subjective definitions of "quality"
- Wide range of phenotypes.
- Susceptible to storage effects.
- Agricultural product with inherent variation.

Table 6:	Deviations	of α-acids i	in case	of sampling every bal	e

Variety	Number Conductometric value EBC 7.5 (% w/w)			Homogeneity		
	of bales	min.	max.	Ø	difference	
Hallertau Perle	48	7.5	8.2	7.91	0.7	good
Hallertau Perle	43	5.9	7.4	6.76	1.5	medium
Hallertau North. Brewer	17	6.8	9.8	8.44	3.0	bad

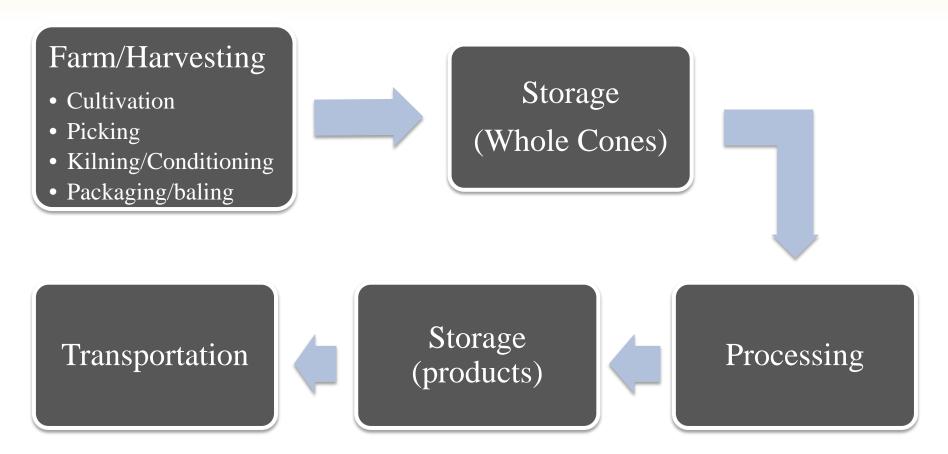
The Challenge of Hops

- Subjective definitions of "quality"
- Wide range of phenotypes.
- Susceptible to storage effects.
- Agricultural product with inherent variation.

Table 6: Deviations of α -acids in case of sampling every bale						
Variety	Number of bales	Conducto min.	ometric val	lue EBC 1	.5 (% w/w) difference	Homogeneity
Hallertau Perle	48	7.5	8.2	7.91	0.7	good
Hallertau Perle	43	5.9	7.4	6.76	1.5	medium
Hallertau North. Brewer	17	6.8	9.8	8.44	3.0	bad

What is hop quality?

Quality: The standard as measured against other things of a similar kind; the degree of excellence of something.


-Oxford English Dictionary

[Hop] Quality is the indicator for the condition in which hop constituents are when being added to the beer/wort. i.e. the definition of quality indicates whether degradation took place from picking to dosage. Quality is the same as "degree of freshness." Ageing components or indicators describe the reduction in quality.

-Adrian Forster

Supply Chain Determines Hop Quality

Indicators & measurements of quality Overview

Physical Indicators

- Visual
- Texture
- Aroma

Measurements

- Hop Storage Index (HSI)
- Hop Acids
- Aroma/Essential Oil
- Moisture

Physical Indicators of Quality: Visual

- Color/brightness
 - burning, browning, over drying
- Seeds and stems
- Size
 - Intact
- Diseases/pest
 - Mites, aphids, mildews

Physical Indicators of Quality: Texture

- Moisture
 - Over drying
- Resinous/Sticky
 - Compressibility of cones
- Integrity

Physical Indicators of Quality: Aroma

Attributes

- Consistency
- True-to-type
- Off-aromas
- Intensity

Examples

- Citrus
- Piney
- Cheesy
- Sweaty
- Skunky

Methods

- **Hand rub** Limitations
- Haas Method
 - Blind code
 - Standardized Hop Grinding (e.g. 20g/10 s)
 - Warm in Jars (~120F)
 - Time sensitive (~2 hours)

Physical Indicators of Quality: Aroma

Attributes

- Consistency
- True-to-type
- Off-aromas
- Intensity

Examples

- Citrus
- Piney
- Cheesy
- Sweaty
- Skunky

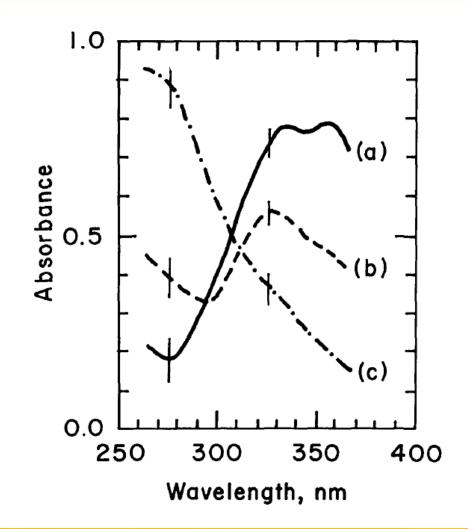
Methods

- **Hand rub** Limitations
- Haas Method
 - Blind code
 - Standardized Hop Grinding (e.g. 20g/10 s)
 - Warm in Jars (~120F)
 - Time sensitive (~2 hours)

Measurements-Routine

- Hop Acids
 - Concentration
 - Reduction

TABLE 1


 HSI Brews made with an identical amount of cone hops stored 18 months at different temperatures

STORAGE	ALPHA ACIDS	ISO-ALPHA	BEER IBUs
TEMPERATURE	IN HOPS	ACIDS IN BEER	
-20F	3.22%	19.8 ppm	13.5
25°F	2.91%	18.1 ppm	12.0
45°F	1.71%	14.4 ppm	13.5
70°F	0.41%	2.9 ppm	11.0

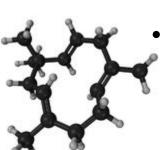
Measurements-Routine


Hop Acids

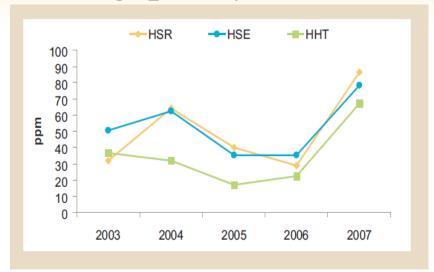
- Concentration
- Reduction
- <u>HSI</u>

Measurements - Advanced

Essential Oil and Aroma

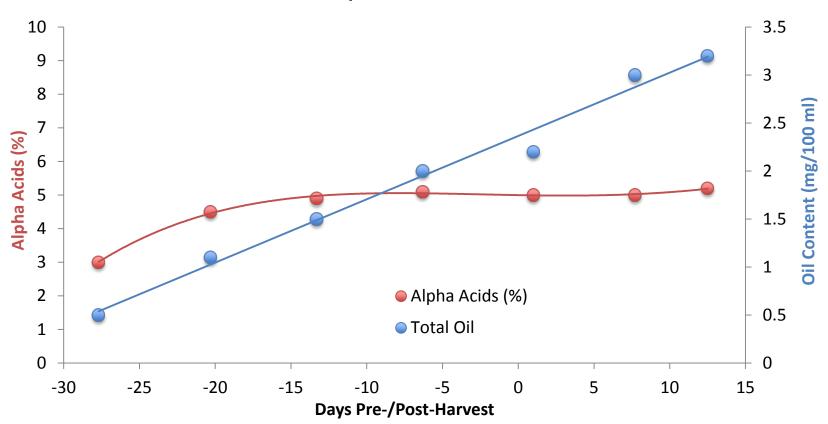


- Varietal Dependent
- Essential Oil = ml/100g hops
 - Linalool
 - Myrcene
 - Humulene/Caryophyllene
 - **Humulene Epoxides**
 - Isovaleric Acid
 - Sulfur Compounds
 - Hundreds more!



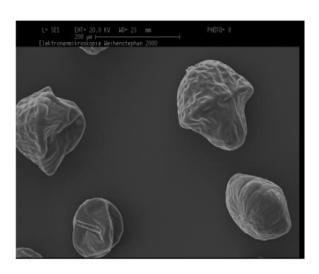
Factors affecting quality

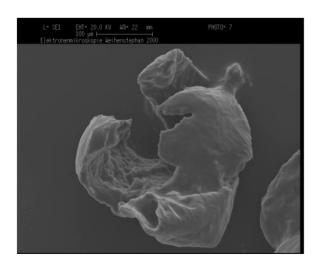
Farming practices


- Diseases/Pests
- Seasonal Variation
- Harvesting/Handling

Effects of Seasonal Variation on Hop Aroma in Beer					
Hop Addition 3g α-acids per hl2006 Harvest2007 l					
α-acids content in pellets	3.7%	4.2%			
Linalool Content (pellets):	28.8 ppm	86.4 ppm			
Pellet addition:	81.1g/hl	71.4hl			
Linalool content (beer)	23.3 ppm	61.7 ppm			

Factors Affecting Quality: Harvest Timing


Hop maturation



Factors affecting quality Baling

Baling

- Purpose: Increase density and stability
- Density
- Size

Factors: Baling

<u>Table 3:</u> Relationship between hop packaging and crushed lupulin glands

Type of bale	Dimension cm	Bulk weight kg/m³	Degree of crushed lupulin glands % relative
Farmers' bales	80 x 120	85	< 1 %
40 kg rectangular bales	60 x 60 x 120	93	< 1 %
60 kg rectangular bales	60 x 60 x 120	139	< 1 to 3 %
80 kg rectangular bales	60 x 60 x 120	185	> 20 %
US bales	76 x 52 x 150	155	> 10 %

Factors: Baling

<u>Table 3:</u> Relationship between hop packaging and crushed lupulin glands

Type of bale	Dimension cm	Bulk weight kg/m³	Degree of crushed lupulin glands % relative
Farmers' bales	80 x 120	85	< 1 %
40 kg rectangular bales	60 x 60 x 120	93	< 1 %
60 kg rectangular bales	60 x 60 x 120	139	< 1 to 3 %
80 kg rectangular bales	60 x 60 x 120	185	> 20 %
US bales	76 x 52 x 150	155	> 10 %

Factors affecting quality Storage


- Temperature
- Time
- Oxygen
- Light
- Moisture
 - Cones: 10-12%
 - Pellets: 9%
 - FIRE DANGER! > 12%

Factors: Storage Temperature

Figure 13: Ageing indicator "Hop Storage Index" of fresh, cold and normal stored hops Figure 14: Ageing indicator "Epoxide fraction" of fresh, cold and normal stored hops, and pellets made from these hops pellets and extract made from these hops 0,5 10,0 8,0 0,4 Hop Storage Index Epoxide ratio % rel. 6,0 fresh cold stored normal stored fresh cold stored normal stored □ Leaf hops ■ Pellets after production ■ Pellets after 1 year storage □ Leaf hops ■ Pellets after production ■ Pellets after 1 year storage Extract after production ■ Extract after 1 year storage

Factors: Storage Temperature

- Cold storage does not increase HSI or Epoxide fraction after 1 year
- Considerable loss in quality over 7 months at ambient conditions
- Quality of CO2 extracts dependent on raw hop quality

Factors: Storage

Cold Storage and Packaging

- Foil lining
- Inert
- Cold
- Time

<u>Table 11:</u> Recommended temperatures for storing hops and hop products

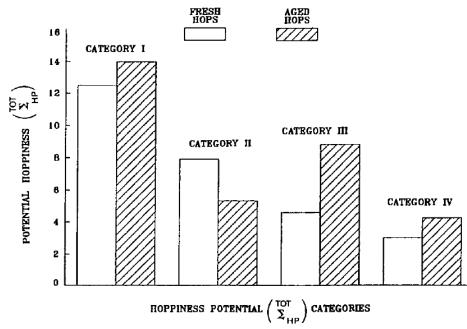
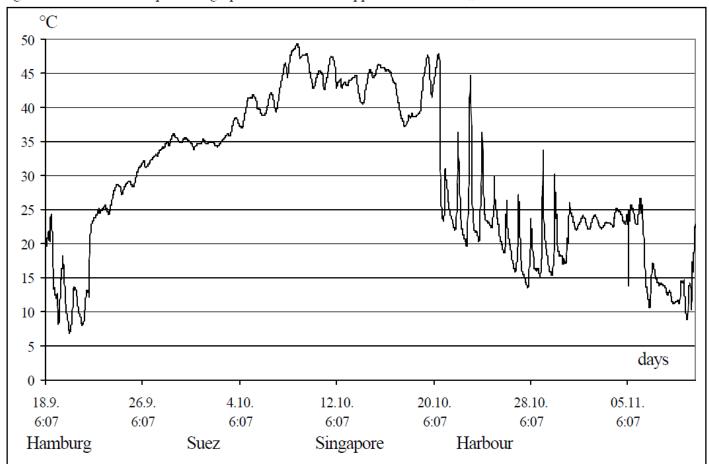
	1 year	3 years	5 years
Whole hops	0 °C	<< 0 °C *)	? *)
Pellets	< 15 °C	< 5 °C	0
CO ₂ -extract	< 20 °C	< 10 °C	< 5 °C

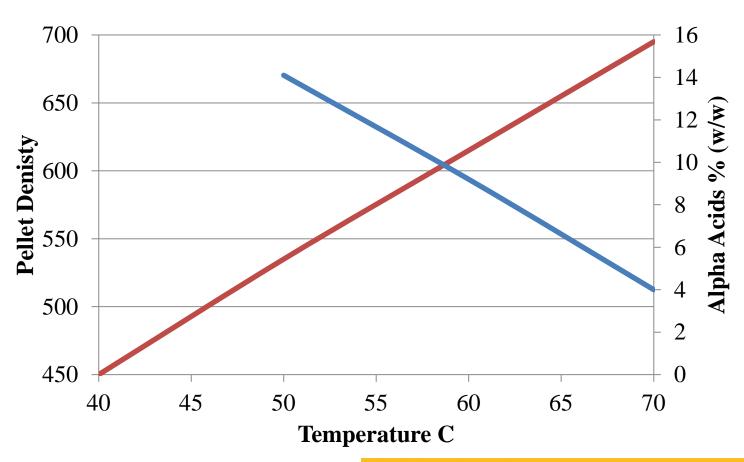
Factors: Storage and Aroma

Moderate aging may increase aroma

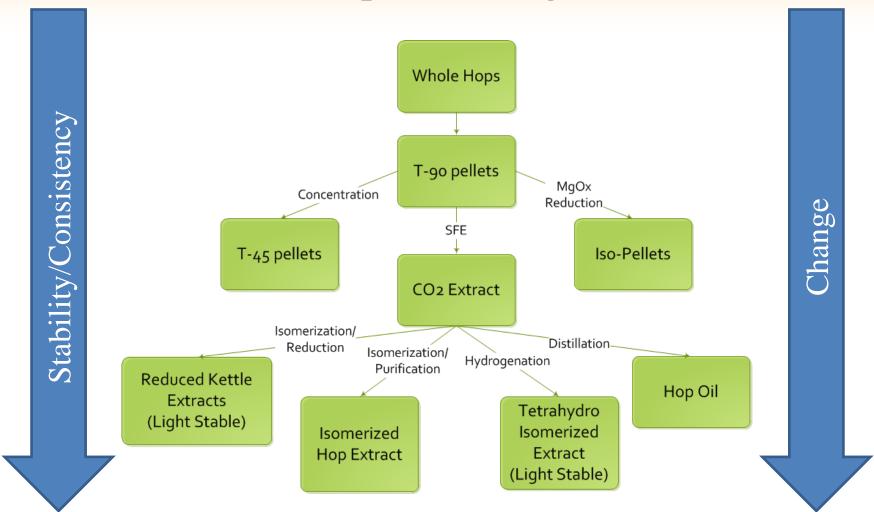
Changes in hop oil/hoppiness during aging (6 month ambient).

- Category 1: Good storability
- Category 2: Poor storability
- Category 3: Improved by age
- Category 4: No helping it...


Fig. 14. The categorization of hop variety type by total hoppiness potential, or sigma, in both fresh and aged hops.

Factors: Transportation


Figure 10: Temperature graph in a container shipped to Far East – "disastrous"

Factors: Pelletizing

Hop Processing

The Challenge of Hops

- Subjective definitions of "quality"
 - Define your style and needs
 - Hops, Pellets, extracts, etc.
- Susceptible to storage effects.
 - Minimize oxygen, temperature, and light.
- Agricultural product with inherent variation.
 - Actively select your hops.
 - Communication your needs.

Thank You!

References

- 1. Benitez, J. L., Forster, A., De Keukeleire, D., Moir, M., Sharpe, F. R., Verhagen, L. C., et al. *EBC-Manual of good practice: Hops and Hop Products*. Hans Carl-Verlag, Nürnberg. 1997.
- 2. Forster, A. The quality chain from hops to hop products. In 48th IHGC Congress, Canterbury, Barth-Haas Research & Publications (http://www.barthhaas.com); 2001.
- 3. Foster, R. T.; Nickerson, G. B. Changes in hop oil content and hoppiness potential during hop aging J. Am. Soc. Brew. Chem. 1985, 43.
- 4. Mitter, W., and Steiner, S. H. Annual fluctuations in hop quality–options for adjustment in the brewhouse. p.36–37, 2009.
- 5. Murphey, J.; Probasco, G. The Development of Brewing Quality Characteristics in Hops During Maturation. *MBAA TQ* 1996, *33*, 149-159.
- 6. Nickerson, G. B.; Likens, S. T. *J Am Soc Brew Chem* 1979, *37*, 36–24.
- 7. Peacock, V. Fundamentals of hop chemistry. MBAA TW 35 (1):4–8 1998.