Renewable cooling energy in breweries
Verena Blomenhofer, Tobias Becher, Klaus Wasmuht, Klaus Gehrig, Ziemann International GmbH, Schwieberdinger Str. 86, 71636 Ludwigsburg/Germany
Winfried Russ, Hochschule Weihenstephan-Triesdorf, Weihenstephaner Berg 4, 85354 Freising/Germany

Areas, in which cooling is required
Source: Fa. Bächler, Schweiz

Possible procedure

Key figures of a snow-making system (here 10 snow lances)

1. Water pressure

Water pressure 2. Compressed air (\sim at $29{ }^{\circ} \mathrm{F}$)
$\xrightarrow[\rightarrow]{7.54 \mathrm{~L} / \mathrm{s} \text { water } \rightarrow 27.1 \mathrm{~m}^{3} / \mathrm{h} \text { water }} \rightarrow 45.2 \mathrm{~m}^{3} / \mathrm{h}$ snow $\left(600 \mathrm{~kg} / \mathrm{m}^{3}\right)$
. $38.2 \mathrm{~m} / \mathrm{h}$ snow $\left(600 \mathrm{~kg} / \mathrm{m}^{3}\right)$
7.38 bar increase of pressure
7.50 kW power consumption
2. Compressed air (\sim at 29° F) $\xrightarrow{\text { Flow rate per snow-making system }} \rightarrow 45 \mathrm{~L} / \mathrm{min} \rightarrow 0.75 \mathrm{~L} / \mathrm{s}$ $\xrightarrow[\rightarrow 10 \text { snow lances } \rightarrow 600 \mathrm{~L} / \mathrm{min}]{\rightarrow 0.75 \mathrm{~L}}$ 8.0 bar compressed air
4.5 kW power consumptio
3. Total energy demand for operating point (at $\sim-29{ }^{\circ} \mathrm{F}, 600 \mathrm{~kg} / \mathrm{m}^{3}$)
$\frac{45.2 \mathrm{~m}^{3} / \mathrm{h} \text { of snow }}{7.5 \mathrm{~kW} \text { (water) }+4.5 \mathrm{~kW} \text { (air) }}=3.77 \mathrm{~m}^{3}$ of snow per kWh,el.

$\rightarrow \mathbf{5 0} \mathbf{- 7 0}$ times of the usual refrigeration plant

Other scenarios

- Instead of 10 snow-making systems only 5 snow-making systems, ie. double snow-producing time
- Instead of 10 snow-making systems only 2 snow-making systems,
- i.e. 5 -fold snow-producing time
- Cooling of the water via evaporation for a faster production of snow

