Master Brewers Association of the Americas

Dedicated to the technology of brewing. 2014 MBAA Annual Conference

A Practical Approach to Controlling the Formation of *trans*-2 Nonenal & Sensory Perception of Papery Off-Notes in Packaged Beer, a Six Sigma Approach

Eric J. Samp, Roman Ortiz, Teri Garvin, Mark Eurich & Bob Foster

Abstract

The formation of *trans*-2 nonenal, (E)-2-nonenal, in packaged beer during shelf life is one parameter that brewers seek to control as this aldehyde imparts undesirable papery off-notes. One mechanism generally accepted by brewers is that flavor inactive bound forms of *trans*-2 nonenal produced in brewhouse operations survive to packaged beer and free trans-2 nonenal is liberated during its shelf life, where it is eventually perceived organoleptically. In utilizing a structured problem solving approach to assist in the control of both free and bound *trans*-2 nonenal, a cross functional team followed the Define-Measure-Analyze-Improve-Control (DMAIC) process to uncover practical brewing factors that influence the formation of *trans*-2 nonenal. Both wort and beer samples were analyzed using a head space solid-phase micro extraction, on fiber derivitization in combination with GCMS, for both free and bound forms of *trans*-2 nonenal. Through a series of experiments it was determined that some practical factors can influence (p-val < 0.05) the formation of *trans*-2 nonenal in wort such as: mash-in pH, mash-in temperatures, whirlpool stand times, wort boiling times, and timing when hops are added whereas other factors tested (p-val > 0.05) were deemed not significant (sparge water temperature, number of lauter tun deep bed rakes, and sweet wort clarity). In a series of confirmation experiments with the significant factors optimized, we were successful in reducing the wort *trans*-2 nonenal levels by 75% with concomitant improvements (p-val < 0.01) in sensory papery scores at 8 weeks of ambient (24 °C) storage. However, the sensory results in the confirmation trial were still deemed too high leading us to also question the masking effects of other compounds in beer. Using a full factorial design, dimethyl sulfide and iso-amyl acetate was added to stale-papery beer and the test runs were evaluated on our sensory panels. Based on the results, it was found that both compounds exhibited a masking effect (p-val < 0.05) and we suspect the interaction between these two compounds may also be important. Thus, controlling the formation of papery off-notes in beer can be viewed as having multiple avenues to drive improvements, all of which must be considered when addressing papery-off notes.

Outline

- What is 6 Sigma (**DMAIC**)
- **D**efine Phase
 - Y-vars
- Measure Phase
 - Papery Gage R&R
 - SPME Fiber Absorption
 - Flow Chart: X-vars
 - C&E Matrix Prioritization
- Analyze Phase
 - Brewing Trials
- Improve Phase
 - 4 RED X's OPTIMIZED SIMULTANEOUSLY
 - DMS & IAA Masking Effects
 - Additional Investigations
- Control Phase

What is 6 Sigma

- Methodology for improving key processes
- Pioneered by Motorola in 1980s
- Team Based structured problem solving process
- Deploys "black belts" trained in statistical and quality management tools to facilitate
- Based on

$$Y - \text{vars} = f\{X - \text{vars}\}$$

Define Phase

Papery Off-Notes formed after 8 weeks at 75 °F
 Y₁ = Mean Papery Score Panels at 8 weeks

Define Phase

• Investigation into compounds associated with papery $Y_2 =$ free *trans*-2 nonenal at 8 weeks

- Reported flavor thresholds (µg/l)
 - 0.030 Saison *et al.* (2009)
 - 0.050 Van Eerde & Strating (1981)
 - 0.110 Meilgaard (1975)

Mechanisms of *trans*-2 **Nonenal Formation**

Mechanisms of trans-2 Nonenal Formation

• Aldol condensation (Hashimoto & Kuroiwa, 1975)

Fate of trans-2 Nonenal

- Yeast can only reduce "free" *trans*-2 nonenal to flavor neutral nonenol through reductase enzymes (Eg. NADPH-dependent aldo-ketoreductases).
- Bound Forms:

Imine Complexes – Lysine & Proteins- Brewhouse Sulphite Adducts – Formed during fermentation

Reapparance of free *trans*-2 Nonenal

- Acid hydrolysis of Schiff base products
- Dissassociation of bisulphite complexes.

Acetaldehyde ← SO₂-t2N Adducts (Burger *et al.* 1954; Barker *et al.* 1983)

```
\begin{array}{c} \mathsf{CH}_3\mathsf{CH}_2\mathsf{OH} + \ ^\bullet\mathsf{OH} \rightarrow \mathsf{CH}_3\mathsf{C}^\bullet\mathsf{HOH} + \ \mathsf{H}_2\mathsf{O} \\ \mathsf{CH}_3\mathsf{C}^\bullet\mathsf{HOH} + \ \mathsf{O}_2 \rightarrow \ \mathsf{CH}_3\mathsf{C}(\mathsf{OO}^\bullet)\mathsf{HOH} \\ \mathsf{CH}_3\mathsf{C}(\mathsf{OO}^\bullet)\mathsf{HOH} \rightarrow \ \mathsf{CH}_3\mathsf{CHO} + \mathsf{O}_2^{\bullet-} + \ \mathsf{H}^+ \end{array}
```

Hydroxyl radical mediated oxidation of ethanol results in acetaldehyde formation

Measure Phase

- Descriptive Sensory Analysis for Papery Trained Panelists, 0-10 Scale, n≥10
- Gage R&R
 - 6 Samples
 - Two panels (trained/calibrated panelist)
 - n=3 replicates
 - ANOVA Method for repeatability/reproducibility
- Discrimination ratio criteria

$$D_{R} = \sqrt{\frac{2\hat{\sigma}_{8week}^{2}}{\hat{\sigma}_{repeatability}^{2}} - 1} > 4$$

Papery Gage R&R Results

Measurement of *trans***-2 Nonenal**

- Method based on Vesley *et al.* (2003) in conjunction with in-house modification and optimization
- Adsorption SPME fiber coated with PFBHA as the derivitisation agent for selective on-fiber reaction (Poster R. Ortiz: A-91)
- Separated by GC (Agilent 7890A) and detected by electron ionization mass spectrometry (Agilent 5975C)
- Internal standard
 3-Fluorobenzaldehyde

Measurement of trans-2 Nonenal

- 6 Sigma Notation: Y-vars = consumer perceives y-vars = variables with correlation to Y-vars
- Bound form *trans*-2 Nonenal (beer and wort) determined using method of Drost *et al.* (1990)
 - pH adjust to 4.0 (wort only)
 - purged with N_2
 - boiled 120 minutes
- Wort Nonenal Potential y_{wort}
- Beer Total *trans*-2 Nonenal y_{beer}

Preliminary Correlation

Measure Phase – List Potential X-vars

Process Inputs	Class	Proces Step Purpose	Process Outputs
Foundation Water (40 bbls)	С		Kettle Wort Clarity (Turbidity - Lipids)
Foundation Water Temperature	М		Wort Volume (1040 bbls)
Rake Speed During Lauter Tun Filling	С		Wort Gravity
Start of Volrlauf (Time)	С		Wort pH
Vorlauf Time (min)	С		
Vorlauf Speed (gals /min)	С		
Set Point (Turbidity - EBC 40) to start first runnings	С		
Initial Delta P across the bed (Good filter bed)	M		
Turbidity Meter Calibration	SOP		
Bed Exposure to air	SOP	Lautoring (Soparate out	
Sparge (2nd Runnings) Water Volume ()	С	extract from solids and	
Sparge (2nd Runnings) Water pH	М	sparge out sugar from	
Sparge (2nd Runnings) Water Temperature (78C)	С	araine	
Sparge (2nd Runnings) water Flow Rate (gals/min)	С	granis	
Sparge (3nd Runnings) Water Volume ()	С		
Sparge (3nd Runnings) Water pH	М		
Sparge (3nd Runnings) Water Temperature (78C)	С		
Sparge (3nd Runnings) water Flow Rate (500 gals/min)	С		
Bed Raking (Rake Hgt is controlled by Delta P level)	C		
Deep Bed Rakes (If DP > 30")	С		

Measurement Phase – Prioritization

- Over 200 Process Inputs were documented (malt storage → packaging)
- Brainstormed 5 potential mechanisms

inputs could
be involved in
multiple
mechanisms
weighted for

importance ω_i

Mechanism Involved	Importance
t2N (hydroperoxides) formation/reduction in	٥
Process	5
Reversible Sulphite Adducts	6
Schiff Base Products	7
(Acetaldehyde + SO2-t2N adducts)	5
Aldol Condensation (acetaldehyde + Heptanal)	3

• Technique: Cause & Effect Matrix Analysis

Measurement Phase – Prioritization

• Input X-Variable Correlation, ρ_{ij}

	Correlation Scale Matrix
0	No possible C&E relationship
1	Perhaps Indirectly Related
3	Some known Association
6	Documented - Suggested
9	Well known documentation & Tested

• Variable Importance Rating

$$VIR_j = \sum_i \varpi_i \rho_{ij}$$

SIMAC Classification

Symbol	Description					
С	Controllable (PID, Recipe Parameter)					
A	Has variability but can be ADJUSTED Through Recipe Changes					
M	Only MEASUREABLE					
1	IMPOSSIBLE to measure					
S	SOPs					

Cause & Effect Matrix Analysis

Project Name Papery Off Note Improvements Cause and Effect Matrix - Prioritization of the X-vars Y1 Y2 **Y**3 Y4 Y5 Rating - Importance to Papery Notes in Pkg Beer Acetaldehyde + SO2 Aldol Condensation (acetaldehyde + Variable Importance 2N (hydroperoxides) Schiff Base Products Sulphite formation/reduction Rating (2N adducts) X-variables Reversible S in Process Heptanal) Adducts SIMAC Process Step Process Inputs Class Wort Boiling Whirlpool Stand Time (10min) С Sparge (3nd Runnings) Water Temperature (78C) С Lautering С Wort Boiling Total Wort Boil Time (75min) Wort Boiling Wort pH А С Set Point (Turbidity - EBC 40) to start first runnings Lautering Wort Boiling Wort Boiling Temperature М Sparge (2nd Runnings) Water Temperature (78C) С Lautering # Deep Bed Rakes (Deep Bed Rakes when DP > 30") М Lautering С Wort Boiling Hops Addition Time Point Fermentation Early Onset of SO2 production M Fermentation М Wort Lipids (UFAs - C18:2) Mash pH - At Mash Tun Full М Mashing Sparge (2nd Runnings) Water pH А Lautering Sparge (3nd Runnings) Water pH А Lautering Wort Solids (% Trub) м Wort Cooling С Speed mash agitator (during grain in) Mashing Mashing Speed mash agitator (during Proteolytic stand) С SOP Fermentation Yeast Storage Time (before Pitching) Yeast that is pitched on the 2nd FV (longer storage) Fermentation (Viability or Temperature induced issues) М Vorlauf Time (min) С Lautering С Mashing Proteolytic rest time (min) Sparge (3nd Runnings) Water Volume () С Lautering Bed Raking (Rake Hot is controlled by Delta P level) С Lautering Mashing Mash in Water Temperature ? Mash-in Temperature (Set Pt 50C vs Actual) С Mashing

Rank Rating

Analyze Phase -

• Narrowed Down List of X-variables

	SIMAC			Current
X-Variable	Classification	Low (-) Level	High (+) Level	Practice
Whirlpool Rest Time	с	2 min	30 min	10 min
Sparge Water Temperature	С	75C	81C	80C
Wort Boiling Time	с	75 min	95 min	75 min
EBC Turbidity (Collection of First				
Worts)	С	20	100	40
Deep Bed Rakes (#)	м	0	2	Range 0 - 2
Mash in Temperature	С	50 C	62 C	50 C
Mash pH at Mash Tun Full			No	No
(Acidification)	Α	Acidified	Adjustments	Adjustments

• One-Way ANOVA Designs

- y-var = Wort *trans*-2 nonenal (free & bound)

Analyze Phase – WP Rest Time

Conclusions:

Evidence exists that a shorter WP Rest will result in lower bound trans-2 nonenal

Analyze Phase – Sparge Water Temperature

Conclusions:

Lack of evidence that sparge water temperature affects either free or bound trans-2 nonenal

Analyze Phase – Wort Boiling Time

Conclusions: Evidence exists that longer wort boiling time lowers bound trans-2 nonenal

Analyze Phase – Turbidity Set Point for First Wort Collection

Conclusions: Lack of evidence that first wort clarity affects either free or bound trans-2 nonenal

Analyze Phase – Deep Bed Rakes

Conclusions:

Lack of evidence that the number of deep bed rakes affects either free or bound trans-2 nonenal

Analyze Phase – Mash-In Temperature

Conclusions:

There is evidence to support that a warmer mash-in temperature lowers free trans-2 nonenal

Analyze Phase – Mash-In pH

Mean pH levels were reduced by 0.27 units with H₃PO₄

Conclusions:

There is evidence to support that a lower mash-in pH lowers bound trans-2 nonenal

Analyze Phase – Trial Recap

	Effect						
X-Variable	Free trans- 2 Nonenal Bound trans - 2 No						
Whirlpool Rest Time	-	SHORTER REST LOWERS					
Sparge Water Temperature	-	-					
Wort Boiling Time	-	LONGER BOIL LOWERS					
EBC Turbidity (Collection of First Worts)	-	-					
Deep Bed Rakes (#)	-	-					
Mash in Temperature	WARMER MASH-IN LOWERS	-					
Mash pH at Mash Tun Full (Acidification)	-	LOWER pH @ MASH-IN LOWERS					

RED X's Statistically Significant (*a*) $\alpha = 0.10$ Level

Improve Phase – Optimization Trial

- During the Improve Phase of DMAIC, solutions are implemented, results are evaluated
- Trials executed by setting the Red X-vars simultaneously to their optimal levels and batches were isolated to packaging

X-Variable	Optimal Setting
Whirlpool Rest Time	2 Minutes
Wort Boiling Time	90 Minutes
Mash in Temperature	62 C
Mash pH at Mash Tun Full (Acidification)	Acidified

Sensory & *trans*-2 Nonenal evaluation (Y-vars) during storage (ambient 75 °F)

Improve Phase – Wort Profile

Conclusions:

The results of the Optimization Trial are significantly lower in both free and bound trans-2 Nonenal

Improve Phase – Comparison to Baseline

Comparison of Kinetics

Improve Phase – Packaging Profiles

Improve Phase – Masking Compounds

- Research Question: What effect does IAA and DMS and their interaction have on the sensory perception of Papery
- Test Design: Base Design 2² factorial with replication (eight samples total)

		Low (-)	High (+)
Factor 1	IAA	0 added	+1.5 ppm
Factor 2	DMS	0 added	+20 ppb

Test Design							
Test Number	IAA	Papery					
1	-	-	2.11				
2	+	-	2				
3	-	+	1.78				
4	+	+	1				
5	-	-	1.89				
6	+	-	1.44				
7	-	+	1.89				
8	+	+	0.89				

• Panelists:

- 9 Advanced tasters - blind scaling validation on Papery/t2N with an $R^2 \ge 0.8$.

• Beer stored 6 weeks ambient with significant papery notes were presented blind in a randomized complete block design, with each panelist assessing each of the eight samples. Response variable was the panel mean papery.

Improve Phase – Masking Compounds

Improve Phase – Masking Compounds

Additional Investigations – Hop Timing

- Lemursieau et al. (2001) Hop Products
- Hop Addition Timing

Additional Investigations – Hop Timing

Late Hop - EOB

Early Hop - EOB

Late-hop supernatant had visually higher particulate (protein flocks) in suspension compared to the early hop brew

Additional Investigations – Boil Time

Bound *trans*-2 Nonenal continues to precipitate out during the boil – Schiff Base Products complexing with Trub

Additional Investigations – Boil Time

Free trans-2 Nonenal appears to not change much

Control – Update Your Recipes

Y-Vars (What we are trying to Control That is Important to the Customer)

	S	Specifications						
				Sample		By	Where	Reaction
Objective Y-var (min. max, target)	LSL	Target	USL	Size	Frequency	Who	Recorded	Plan
Minimize		0	1.2	1 6 pk	1/month	Sensory	Compusens	N/A
Minimize		0	0.4	1 can	1/month	Labs	LIMS	N/A
	Objective Y-var (min. max, target) Minimize Minimize	Objective Y-var (min. max, target) LSL Minimize Minimize Minimize Minimize	Objective Y-var (min. max, target) LSL Target Minimize 0 Minimize 0 Minimize 0	Specifications Objective Y-var (min. max, target) LSL Target USL Minimize 0 1.2 Minimize 0 0.4	Specifications Objective Y-var (min. max, target) LSL Target Sample Minimize 0 1.2 1 6 pk Minimize 0 0.4 1 can Image: Imag	Specifications Objective Y-var (min. max, target) LSL Target Sample Frequency Minimize 0 1.2 1 6 pk 1/month Minimize 0 0.4 1 can 1/month Minimize 0 0.4 1 can 1/month	Specifications Objective Y-var (min. max, target) LSL Target USL Sample Size By Minimize 0 1.2 1 6 pk 1/month Sensory Minimize 0 0.4 1 can 1/month Labs Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image	Specifications Objective Y-var (min. max, target) LSL Target USL Sample Size By Frequency Where Recorded Minimize 0 1.2 1 6 pk 1/month Sensory Compusens Minimize 0 0.4 1 can 1/month Labs LIMS Minimize 0 0.4 1 can 1/month Labs LIMS Minimize 0 0.4<

INPUTS KPIVs X-Variables (How are we going to control the outputs)

						pecificat	ions					
			How is it to be controlled (SPC, SOP,									
			Audit, PID,	Measurement				Sample		By	Where	Reaction
Verified X-Factor	Process Step	Effect on Y-vars	Parameter)	Method	LSL	Target	USL	Size	Frequency	Who	Recorded	Plan (QFR)
Mash in pH	Mash Tun	As mash in pH increases t2N increases	SPC	Lab Probe	5.3	5.4	5.5	500 mls	1 per day	QC lab	LIMS	Adjust H3PO4
Mash in Temperature	Mash Tun	Increase Temp reduces t2N	PID	In line Temp Proble	59 C	60 C	61 C	N/A	Every Brew	Brewing	MES	
Boil Time (6.25% total Evap)	Wort Boiling	Longer boil reduces bound t2N	Parameter	Control System	89	90	91	N/A	Every Brew	Brewing	MES	
WP Rest Time	Wort Clarification	If WP rest increases, t2N increases	Parameter	Control System	1	2	3	N/A	Every Brew	Brewing	MES	
		If HOPS are added later into the boil wort										
Hop Addition Timing	Wort Boiling	t2N levels tend to increase	SOP	(bbls hops are added)	15% KFV	25% KFV	50% KFV	N/A	Every Brew	Brewing	MES	

Summary

- DMAIC Application was effective
- Controlling the formation of *trans*-2 Nonenal and Papery off-notes can be achieved in the brewhouse

 $Y_{t2N} = F(Mash \, pH, Mashin \, temp, Hops \, add, Boil \, Time, WP \, Stand)$

- We have evidence that other compounds (ie. yeast derived) can mask *trans*-2 Nonenal
- BE CAREFUL CUTTING DOWN BOIL TIME

Acknowledgements

- MillerCoors for permission to present this work (Rob Maruyama, Warren Quilliam and David Ryder)
- A few other team members who without their assistance this work would not be possible:
 Dave Pelny Walter Heeb
 Monika Hayward Sue Kay
 Tobin Eppard Greg Casey
- Project Sponsors: Stu Oliver, Colleen Reiter & David Ryder