Master Brewers Association of the Americas

HEAT STATE OF THE STATE OF THE

Dedicated to the technology of brewing.

MBAA Annual Conference

A SPRINGBOARD TO UNDERSTANDING BEER FLAVOR STABILITY:

THE ROLE OF BOUND-STATE ALDEHYDES

Jeroen Baert, Jessika De Clippeleer, Luc De Cooman, Guido Aerts

- > 60% of Belgian beer production is exported
 - Mostly pale lager beers
 - Also many specialty beers
- Common belief:

Flavor richness of specialty beers masks aging flavors

Case Study:

European specialty beers as sold on the Brazilian market

→ Why is beer flavor stability so important?

Sensory evaluation:

- Beers as sold in Brazil:
 - Clearly aged, both blond and dark beers
 - Typical aldehyde-related off-flavors
 - Strong decrease in panel's appreciation

Aldehyde concentrations:

Montandon, G., Quality of imported beers in Brazil. Proceedings of the 11^{th} Trends in Brewing **2014**, IL.03.

- Despite masking flavors, even specialty beers deteriorate intensively
- Market globalization requires improved beer flavor stability, otherwise risk of consumer rejection
- Need for more conscious transportation and storage conditions to prolong shelf life
 - Refrigeration
 - Reduced agitation
 - High stock turnover
- Need for more fundamental insights and solutions

Chemistry background

- In fresh beer: minimal aldehyde concentrations due to yeast's reducing activity
- Origin of the increases in aldehyde concentrations during aging?

and/or

De novo formation

during storage?

Fatty acid oxidation, Literature:

Strecker degradation,

Maillard reaction,...

Upstream formation and

release from a bound state

during storage?

- bisulfite adducts Literature:

- imines

Likeliness of contribution to flavor instability?

Inconclusive, contradictions

Chemistry background

- Bound state: Bisulfite Adducts
 - SO₂ is excreted by yeast during fermentation
 - SO₂ can be added as food additive

aldehyde
$$\alpha$$
 -hydroxy sulfonate

- Bound state: Imines ('Schiffs bases')
 - Aldehydes can bind to amino acids, peptides and proteins

Methodology

- Method for direct measurement of bound aldehydes unavailable
- Free aldehyde quantification by

Automated headspace (HS) solid-phase microextraction (SPME) coupled to gas chromatography – mass spectrometry (GC-MS)

Methodology

EXPERIMENT

- AIM: Assess aldehyde binding to different amino acids
- SETUP:
 - Phosphate buffer (0.05 M, pH 6.0)
 - > Nonanal and (E)-2-nonenal $(1 \mu M)$
 - Individual amino acids (1 mM)

recovery (%)

EXPERIMENT

- AIM: Assess the influence of concentration and pH on aldehyde binding
- SETUP:
 - Phosphate buffer (0.05 M)
 - > Nonanal and (E)-2-nonenal $(1 \mu M)$
 - ◆ Alanine (0 10 mM)
- or ◆ − SO₂ (0 - 1 mM)

Chemistry background

Bound state: Thiazolidine carboxylic acids

Thiol group of cysteine attacks carbonyl function,
 stabilization by cyclization

Methodology

How to release aldehydes from these thiazolidines?

Methodology

Aldehyde binding and release in models

EXPERIMENT

- AIM: Assess the release of bound aldehydes by addition of 4VP as scavenger
- SETUP:
 - Phosphate buffer (0.05 M)
 - > Nonanal and (E)-2-nonenal $(1 \mu M)$
 - Cysteine (500 μM)
 - ◆ − SO₂ (500 μM)
 - **■** 4-vinylpyridine (500 mM)

Aldehyde binding and release in models

recovery (%)

Similarly:

2-methylpropanal 12
2-methylbutanal 16
3-methylbutanal phenylacetaldehyde methional

Similarly:

furfural benzaldehyde

Similarly:

2-methylpropanal
2-methylbutanal
3-methylbutanal
phenylacetaldehyde
methional
benzaldehyde
furfural (release)

Similarly:

furfural (binding)

Aldehyde release from beer

EXPERIMENT

- AIM: Assess the release of bound aldehydes by addition of 4VP as scavenger in fresh pale lager beer
- SETUP:
 - Fresh commercial pale lager beer
 - 4-vinylpyridine (500 mM)

Aldehyde release from beer

Strong link with aldehyde increases during aging!

Conclusions

- Bound state: Imines ('Schiffs bases')
 - Formation not confirmed
- Bound state: Bisulfite Adducts
 - Formation clearly confirmed
 - A higher pH yields more SO₂ binding
 - \rightarrow SO₂ only present after fermentation (at beer pH)
 - → SO₂ depletion can shift equilibria from SO₂ adducts to free SO₂ and free aldehydes
 - 4VP addition yields (almost) full recovery of free aldehydes
 - Special case: only minor recoveries of (E)-2-nonenal due to irreversible binding to double bond

a -unsaturated aldehyde

$$\alpha$$
 -unsaturated aldehyde

 α -unsaturated aldehyde

Conclusions

• Bound state: Thiazolidine carboxylic acids

- Cysteine clearly interacts with aldehydes
- A higher pH yields more cysteine binding
 - → Formation most likely early in the brewing process (wort pH), possibly also during malting (malt pH)
 - → pH control during brewing may affect the thiazolidine content in fresh beer
 - → Free cysteine depletion during aging may shift equilibria from thiazolidines to free cysteine and free aldehydes
- 4VP addition yields (almost) full recovery of free aldehydes
- 4VP addition clearly releases aldehydes from fresh lager beer
 - Combination of SO₂-adduct release and thiazolidine release
- EXTRA: Presence of thiazolidine carboxylic acids in fresh lager beer confirmed by liquid chromatography (data not shown)

Future prospects

Use methodology for fundamental insights

Beer spiked with (labeled) precursors
 → de novo?

Beer spiked with labeled aldehydes

→ recovery without and with 4VP?

 Use methodology for more practical insights

- Effect of raw materials
- Effect of brewing parameters
- Effect of yeast strain

Future prospects

- Use approach as a flavor instability prediction tool
 - Input variables
 - Free aldehydes
 - 4VP-released aldehydes
 - Amino acids incl. cysteine
 - Total thiol content
 - SO₂
 - Artificial neural network

- Output variable:
 - Expected free aldehydes in aged beer

Future prospects

 What can the flavor instability prediction tool potentially do for brewers?

- → Raw material evaluation
- → Brewing parameters evaluation
- → Evaluation of export feasibility

 \rightarrow ...

Master Brewers Association of the Americas

Dedicated to the technology of brewing.

MBAA Annual Conference

THANK YOU

FOR YOUR ATTENTION

