Master Brewers Association of the Americas

THE STATE OF THE S

Dedicated to the technology of brewing.

MBAA Annual Conference

Identifying Hidden Opportunities in Your Operations: Benefits of a Total Plant Approach

Jeffrey Hutchison – Ecolab Brian Ornay – Ecolab

Agenda

- Brewery overview
 - Holistic perspective
- Key performance indicators (KPIs)
 - Brewery-specific goals
- Case studies
 - Reduction in water usage
 - Reduction in energy usage
 - Project prioritization
- Baseline tracking
- Open discussion / Q&A

Brewery Overview

Understanding Your Interconnected Operations

Understanding Your Interconnected Operations

Water Treatment

Cleaning & Sanitization

Wastewater Treatment

Understanding Your Interconnected Operations

Water quality impacts cleaning efficiency

Understanding Your Interconnected Operations

Cleaning chemistry affects wastewater treatment

Understanding Your Interconnected Operations

Water and heat/energy from one process can be used in another

REPURPOSE | REUSE | REDUCE

Proven Results from Partnerships

Delivering Improved Profits

Determining Your Business Drivers

- Food and product safety
- Product quality
- Brand image

Operational efficiency

- Total cost of operation reductions
- Improved productivity

Sustainability

- Water
- Energy
- Waste

Assessment Scope

Reduce Total Costs

Assessment Process

Pre Assessment

- Schedule assessment
- ▲ Identify team
- Detailed assessment of current plant processes
- Gather appropriate data
- Baseline current usage

Assessment

- Perform assessment
- Establish benchmarks
- Identify opportunities

Post Assessment

- Analyze data
- Determine an action plan for implementation
- Track progress

3 to 4 weeks

1 week

2 to 4 weeks

WUR Optimization Continuum

Industry Average = 3.66
* 2013 BIER Water Stewardship Benchmarking Study

Brewing Industry Water & Energy Norms

Plant Water Balance

Plant Water Balance (Detailed)

Case Study #1 – Pasteurizer Water Reduction

HOUSEHOLDS:

- ✓ Relocate non-oxidizing biocide feed from top to bottom deck
- ✓ Increase non-oxidizing biocide frequency
- ✓ Install a Weir block off plate on side opposite of the pump, top deck

OPERATIONAL SAVINGS IMPACT:

WATER	ENERGY	WASTE	PROD.	CHEMICAL
\$ 150,000	\$ 126,402	(\$)	(\$)	(\$)

SUSTAINABILITY IMPACT:

WATER (hL) 600,000	ENERGY (GJ) 22,118	WASTE (KG)	PROD. (HOURS)	CHEMICAL
--------------------------	--------------------------	---------------	------------------	----------

OVERALL IMPACT:

TOTAL ANNUAL SAVINGS	\$ 276,402
ONE-TIME INVESTMENT	\$ 5,000
SIMPLE PAYBACK	Immediate; 0.17 hL/hL reduction

Case Study #2 – Cooling Water Blow-down Reduction Through Automation

Total Evap Water Makeup (All Sources)

- ✓ Cycles of Concentration (COC) at 6 based on conductivity
- ✓ Actual COC at 3.5 based on mineral analysis, and low stress conditions
- ✓ Increased COC to 10 based on conductivity using online stress monitoring and control

OPERATIONAL SAVINGS IMPACT:

WATER	ENERGY	WASTE	PROD.	CHEMICAL
\$ 33,000	(\$)	(\$)	(\$)	(\$)

SUSTAINABILITY IMPACT:

MATER				
WATER	ENERGY	WASTE	PROD.	CHEMICAL
(nL)	(GJ)	(KG)	(HOURS)	
276,000				

OVERALL IMPACT:

TOTAL ANNUAL SAVINGS	\$ 33,000	
ONE-TIME INVESTMENT	\$ 10,000	

SIMPLE PAYBACK 3.5 months; 0.035 hL/hL reduction

HOUSEHOLDS:

Plant Energy Balance

All values in DTH

Case Study #3 – Energy Recovery

- ✓ Air Compressors and CO₂ Compressors require a cooling media
- ✓ Instead of utilizing a cooling tower system, cool with water supplying the 180F hot water system
- ✓ This reduces steam demand to make 180F hot water

				÷
WATER	ENERGY	WASTE	PROD.	
\$ 929	\$ 80,669	(\$)	(\$)	

SUSTAINABILITY IMPACT:

WATER (hL) 297,624 ENERGY (GJ) 29,706

WASTE (KG) PROD. (HOURS)

CHEMICAL

CHEMICAL (\$)

OVERALL IMPACT:

TOTAL ANNUAL SAVINGS \$ 81,598

ONE-TIME INVESTMENT

\$ 100,000

SIMPLE PAYBACK

14.7 months; 0.042 hL/hL reduction

HOUSEHOLDS:

Case Study #4 – Chilled Water Temperature

- ✓ Due to pasteurizer operational changes, chilled water demand decreased
- ✓ Reduced demand allows for a higher chilled water temperature set point (35F to 45F)
- ✓ This increased chiller efficiency, reducing load by 100 kW/hr

OPERATIONAL SAVINGS IMPACT:

WATER	ENERGY	WASTE	PROD.	CHEMICAL
(\$)	\$ 40,320	(\$)	(\$)	(\$)
SUSTAINABILIT	Y IMPACT:			

SUSTAINABILIT	Y IMPACT:			
WATER (hL)	ENERGY (kWh) 720,000	WASTE (KG)	PROD. (HOURS)	CHEMICAL

OVERALL IMPACT

TOTAL ANNUAL SAVINGS	\$ 40,320
ONE-TIME INVESTMENT	\$ 0
SIMPLE PAYBACK	Immediate

HOUSEHOLDS:

Project Prioritization

Project	Impact	Implementation (Easy) (Complex)
Filler vacuum seal pump water optimization through closed loop recirculation	15 – 30 m3 per Bottle line/ day	
Bottle internal rinse water – Recover and use as pasteurizer, cooling tower or lubrication makeup	12 – 24 m3 per Bottle line/ day	
Reuse can pre-rinse water as can wash-off water after filling	0.5 – 24 m3 per Can line/ day	
Cooling system cycles improvement or optimization	0.02 – 0.08 hl/hl beer produced	
Push/ chase water collection and reuse as makeup for cooling tower, pasteurizer, CIP or wash down	0.5 – 1.0 hl/ hl beer produced	
CIP rinse water recovery and reuse as makeup for cooling systems, pasteurizer etc.	0.2 – 0.7 hl/ hl beer produced	
Pasteurizer overflow water recycle	5 – 10 m3 per pasteurizer/ hour	

Baseline vs. Improved Metrics

FUTURE

COSTS

SUSTAINABILITY:

PLANT METRIC	DEFINITION	CURRENT VALUE	AFTER PROJECTS	% REDUCTION
Water Efficiency Ratio	(Gals Water - Ingredient Water)/ Gals Product	1.58	1.15	27%
Fuel Consumption Ratio	DTH's/1,000 Gals Product	1.52	0.92	40%
Waste Loading Ratio	Lbs SOLIDS in Effluent/ 1,000 Gals Product	57.22	49.00	14%

OPERATIONAL COSTS:

Water Cost Contribution	\$ Water/1,000 Gals Product	\$9.93	\$7.33	26%
Fuel Cost Contribution	\$ Fuel/1,000 Gals Product	\$15.21	\$10.64	30%
Waste Cost Contribution	\$ Effluent treatment/ 1,000 Gals Product	\$15.01	\$10.08	32%
Total Cost Contribution	\$ Total Spend/ 1,000 Gals Product	\$40.15	\$28.05	30%

CURRENT

COSTS

Thank you!

