

NIR Application in Malting

2014 Brewing Summit, Chicago

Yueshu Li Canadian Malting Barley Technical Centre Winnipeg, Canada

Outline

- 1. What is NIR method?
- 2. Principles and instrument
- 3. What can NIR do for us?
- 4. Challenges and limitations
- 5. Discussion

What is NIR Method?

- A spectroscopic method that uses the nearinfrared region of the electromagnet spectrum
- Based on a mathematical interpretation of the electromagnetic information collected from the sample that is tested
- It is a secondary method; the analytical results generated by a NIR instrument are a "prediction" not "direct measurement"

What is NIR Method?

- It is fast and non-destructive
- It requires limited sample preparation
- It can produce multi-parameters from a single test
- It requires limited skill on operator
- Its accuracy depends on the reference methods used for calibration development, and the techniques used for calibration development

History

- **1800:** The 1st NIR Spectrum recorded (Herschel)
- **1950-1960** : Potential of NIR quantitative analysis was recognized (Kaye)
- **1960s:** Research program on NIR analysis of agriculture stuff at USDA (Norris)
- 1971-1987: Development of the1st to 5th generation of NIR Instrument
- 1980s: Introduction of Principal Component calibration
- **1990s:** Development of Nonlinear calibration methods
- Present: More applications, better instrument & easier to use

Typical Application

- Astronomical spectroscopy
- Remote monitoring
- Materials science
- Medical uses
- Pharmaceutical
- Agriculture
- Food industry

NIR Instrument Is not a Magic Box !!!

Steps involved in NIR analysis:

- 1. Collect NIR spectrum data on test sample with a NIR Instrument
- 2. Plug NIR spectrum data into the calibrations (computer + mathematic models)
- 3. Predict analytical results (computer + mathematic models)

Some Basics

Terminology

- NIR = Near Infrared
- NIR= Near Infrared Reflectance
- NIT= Near Infrared Transmittance
- NIRS = Near Infrared Spectroscopy

- The spectrum visible to the human eye: from 400 800nm
- Near infrared spectrum covers: from about 750 2500nm
- Infrared spectrum covers: from about 2500 25000nm

Image: http://the-wombat.com/UVNIRphoto.htm

Some Basics

- NIR technology involves light interacting with matter where electromagnetic radiation occurs in the form of waves.
 - Wavelength of a light (λ) is the distance between the two high points.
 - λ is normally measured in nanometer (nm) in NIR spectrum (1nm = 10⁻⁹m)
 - Wave number (cm⁻¹) =1/ λ

Wave number = 10⁷ /wavelength (nanometer)

Image: http://catalog.flatworldknowledge.com/bookhub/4309?e=averill_1.0-ch06_s01

Some Basics

Take a chemical fingerprint of a material using NIR light at a specific wavelength:

- The test sample is radiated by NIR light for collecting absorption or reflectance signals
- Measure the wavelength and intensities of the absorption of NIR light by a sample
- The absorption or reflectance spectrum is directly proportional to the chemical compositions of the sample.

- NIR absorption is mainly due to hydrogen bonds
- Specific bonds between the atoms vibrate at a certain frequency and each type of these chemical bonds within a sample will absorb NIR light of a specific wavelength, while all other wavelengths are being reflected.
- NIR light is absorbed by molecules containing these functional groups such as: fats, proteins, carbohydrates, organic acids, alcohol and water

Some Basics

<u>The atoms in a CH₂ group, commonly found in organic</u> <u>compounds, can vibrate in six different ways:</u>

Images: http://en.wikipedia.org/wiki/Molecular_vibration

Some Basics

NIR Reflectance analysis vs. NIR Transmission analysis

- In practice, the sample to be analysed is bombarded with NIR lights of different wavelengths.
- At each wavelength, some of the lights will be absorbed by specific chemical bonds. At the same time other lights will be scattered and reflected by other chemical bonds (NIR Reflectance).
- In contrast, some of the lights may pass through the sample, which is described as NIR Transmittance (NIT).

NIR Spectra

NIR Spectra

Instrument

- A NIR spectrometer is generally composed of a light source
- Monochromator
- Sample holder or a sample presentation interface
- Detector, allowing for transmittance or reflectance measurements

Instrument

Basic configurations of NIR spectrometer

Instrument

- 1. The light source; usually a tungsten halogen lamp
- 2. Detector types:
 - *Silicon* fast, low noise, highly sensitive (visible to 1100 nm)
 - Lead Sulfide (PbS) slower, sensitive from 1100 to 2500 nm
 - Indium gallium arsenide (InGaAs) combines the speed and size characteristics of the silicon detector with the wavelength range of the PbS detector.
- 3. Sample presentation: unprepared, ground,& liquid etc.

Some NIR Instruments

<u>Foss'</u> Infratec™ 1241 <u>Grain Analyser</u>

Images: www.foss.dk, www.unityscientific.com, www.foodprocessing-technology.com, www.wteservice.trustpass.alibaba.com

What Is Calibration?

The established Mathematical Relationships between NIR spectrum & analytical results generated by reference methods

Mathematical component of calibration model

• Single-term (one independent variable) regression equation:

 $Y = a+bX+e \text{ or } \hat{Y} = a+bX$

- Y is the reference and X is log(1/R)
- **a** and **b** are regression constants
- $\hat{\mathbf{Y}}$ is an approximation to \mathbf{Y}
- $\mathbf{e} = \mathbf{Y} \hat{\mathbf{Y}}$
- Multi-term linear regression equation:

$$-Y = a + b_1 x_1 + b_2 x_2 + ... + b_k + x_k$$

• x's are log(1/R); values at k different wavelengths

The Calibration Process

- 1. Selection of a representative calibration sample set
- 2. NIR spectra acquisition and determination of reference values
- 3. Multivariate modeling to relate the "spectral variations" to the "reference values" of the analytical target property
- 4. Validation of the model by cross validation, set validation or external validation

Techniques for Calibration Development

- Select/pre-treat spectrum data (Reduce data points & reduce noises)
- Select pre-treat reference data (Eliminate outliners & data transformation)
- Establish regressions between NIR data and the reference method data

Techniques for Calibration Development

Mathematical or statistical methods for extracting information & relating measurements

- Simple regression analysis
- Multivariate regression analysis
- Principal components analysis (PCA)
- Discriminant analysis
- Artificial neural networks

What NIR Can Do For Us?

- According to some researchers and NIR instrument providers, nearly all the quality parameters of interest to maltsters can be measured (predicted) by NIR.
- Up to date, only limited analysis measured by NIR have been accepted by maltsters and brewers such as moisture and protein, alcohol content etc. although NIR method shows lots of promise

Using NIR Analysis

- Many grain and malting companies have successfully implemented NIR spectrometers in their quality control laboratories for routine use in raw material qualification
- This is based on the fact that the customers accept the results generated by NIR analysis

Malt Analysis Expected by Brewers

Criteria for "Ideal Malts"				
	2-R Barley	6-R Barley		
Total protein,	11.3-12.8	11.3-13.3		
On 7/64 screen, %	>70	>60		
B-glucan, ppm	<115	<140		
F/C, %	<1.5	<1.5		
Soluble protein, %	4.9-5.6	5.2-5.7		
Soluble protein/ Total protein, %	42-47	42-47		
Turbidity, NTU	<10	<10		
Viscosity, CP	<1.50	<1.50		
F-Extract, %	>81.1%	>79.0		
Color, ASBC	1.6-2.0	1.8-2.2		
Diastatic power,℄	120-160	140-180		
α-Amylase, DU	45-80	45-80		
(American Malting Barley Association, 2003)				

NIR Analysis Used by Malting & Brewing Industries

Barley	Status	Malt	Status	Beer	Status	Hops	Status
Moisture	Good accuracy	Moisture	Good accuracy	Alcohol	Very accurate	a- Acids	
Protein	Good accuracy	Protein	Good accuracy	Original gravity		B- Acids	
Extract		Extract		Apparent extract		Hop storage Index	
Enzymes		Enzymes		Real extract			
B-glucan		B-glucan					
Soluble protein/FAN		Soluble protein/FAN					
		Color					
		Friability					
		Color					
		Wort viscosity					

Standard Error and Repeatability for Reference Method

	S _r	r ₉₅		
Moisture	0.12	0.3		
Friability	1.7	4.8		
Extract	0.16	0.4		
β Glucan	5	14		
Viscosity	0.01	0		
Soluble Protein	0.1	0.3		
Protein	0.12	0.3		
FAN	3.2	9		
Colour	0.05	0.1		
DP	4.2	12		
Alpha	2.2	6.2		
GRL, Canadian Grain Commission, Winnipeg				

Standard Error of NIR Calibrations Developed by Different Researchers

Using barley to predict potential malt quality					
	Helm SEC Li SecV		GRL SEC		
Protein	0.28	0.28	0.2		
Extract	0.6	0.43	0.45		
DP	6.7	13	14		
Alpha	2.2	2.8	5		
SP	0.15	0.19	0.16		
B- Glucan	33		116		
Friability	4.8	3.2	3.8		

This approach has been used by barley breeders for screening breeding lines with different degree of success.

Standard Error of NIR Calibrations Developed by Different Researchers

For Malt Analysis						
	Halsey England 1987	Munk Denmark 2000	Panozzo Australia 2001	Fantozzie Italy	MacLead GRL Canada 2011	Li CMBTC Canada 2013
Protein,%	0.3	0.31			0.29	0.43
Extract,%		0.6	0.9	0.58	0.59	0.52
Friability,%	5.7	5.6		2.2	5.6	5.0
Soluble protein,%			0.3	0.13	0.2	0.25
FAN, ppm			17	6	10	12
β Glucan, ppm		118	165		158	63
Diastatic power, °L			20		16	11
A-amylase ,DU					7.0	5.6

NIR vs. Reference

Factors That May Affect Accuracy of Predicted Results

- Sampling error & sample preparation
- Reference error
- Reference method error (lab, operator, procedure)
- Operating environment
- NIR instrument (Spectral measurement, choice of data treatment, calibration techniques)

Challenges for NIR Methods

- Creating database (60-1000) & data sharing
- Developing accurate and robust calibrations
- Maintaining Calibration
- Uniformity across NIR units (different models and manufacturers)
- Standardized calibration evaluations
- Sharing calibrations (Legal roles and regulations)
- Agree in the reference methods
- Acceptance by your customers

Discussion

- Will a NIR instrument be the solution to our production quality control and other analytical problems?
- Can NIR instruments provide maltsters with a complete malt analysis with an acceptable accuracy?
- Is it simple enough for someone without the technical skill to operate?

Acknowledgements

Thanks to the CMBTC team and board, as well as the support provided by the GRL

Yueshu Li, Adam Franczyk, Ian McCaig, Aaron Onio

Malt Academy

Next 2-week Malting Program

Aug. 25th – Sept. 5th, 2014