

World Class. Face to Face.

Correlation Between Sensory Analysis and Volatile Composition of Beer using Multivariate Analysis: Effect of the Beer Matrix on the Sensory Perception and Volatile Fraction Behavior

Ph.D. Luis F. Castro

Ph.D. Carolyn F. Ross

School of Food Science, Washington State University

Beer Volatiles

Flavor Perception

• Volatiles have to be released from the beer

• Not uniformly released

- Release dependent on:
 - » Concentration
 - » Interactions with non-volatile ingredients

Previous Studies

• Interactions among volatile aroma compounds and the non-volatile matrix influence flavor perception

• Relationships between chemical and sensory data would help understand how interactions affect flavor perception

OBJECTIVES

• Study the effect of non volatile levels on volatile fraction behavior and sensory perception

• Hypothesis: Interaction between volatile and non-volatile fractions will impact partitioning and sensory perception of the beer

EXPERIMENTAL APPROACH

Trained Panel

• 8 hour training sessions

• 15 cm-line scales

• Formal evaluations

• Aroma and Flavor perception

• Beer Flavor Solution

• Non-Volatiles

• Isomerized Hop Acid

Beer Flavor Solution

- Isoamyl acetate (Banana)
- Ethyl hexanoate (Apple)
- Benzaldehyde (Almond)
- Myrcene (Dry-Hop)

- **Non-Volatiles**
 - Glucose
 - Fructose
- Maltodextrin
- Protein Extract

• 3 levels of CHO (Low, Medium, High)

• 3 levels of Pro (Low, Medium, High)

• 9 combinations of CHO/Pro

Sensory Results

	Protein Level			Carbohydrate Level		
Attribute	L	Μ	Η	L	Μ	Η
Apple aroma	3.7 ^a	4.8 ^b	5.0 ^b	4.2 ^a	4.7 ^a	4.5 ^a
Banana aroma	2.4 ^a	3.4 ^b	3.4 ^b	3.1 ^a	3.1 ^a	3.0 ^a
Almond aroma	2.5 ^a	2.9 ^a	2.8 ^a	2.8 ^a	2.6 ^a	2.9 ^a
Dry-Hop aroma	3.1 ^a	2.9 ^a	2.9 ^a	3.4 ^a	3.2ª	2.5 ^b
Apple flavor	3.3 ^a	4. 1 ^a	3. 8 ^a	3.4 ^a	4.0 ^a	3.9 ^a
Banana flavor	2.1 ^a	2.6 ^a	2.6 ^a	2.2ª	2.4 ^a	2.6 ^a
Almond flavor	3.3 ^a	3.2 ^a	2.9 ^a	2.9 ^a	3.1 ^a	3.4ª
Dry-Hop flavor	3.1 ^a	2.9 ^a	2.7 ^a	3.4 ^a	2.8 ^{ab}	2.6 ^b

Sensory Aroma Results

• Unexpected increase in aroma intensity with increasing levels of protein

• Proteins bind volatile flavor components

Aroma Results

- Presence of protein-protein interactions
- Retention varies depending on volatile compound
- Reciprocal aroma suppression

Reciprocal Aroma Suppression

• An odorant decreases the perceived intensity of others

• Suppression effect was reduced due to binding

• Processing of mixtures by the brain is not fully understood

Aroma Results

• Dry-hop reduction with increase in carbohydrate concentration

• Increase in solution hydrophobicity

• Myrcene hydrophobicity

Flavor Results

• No trend in the results

• No effect except for dry-hop flavor

• Components in saliva could affect partitioning

• Individual panelist differences

Instrumental Analysis

SPDESBSESPME

Concentration (mg/L) of Compounds at Different Protein Concentrations using SPME

Concentration (mg/L) of Compounds at Different CHO Concentrations using SPME

Proteins

- Proteins bind flavor compounds strongly
- Hydrophobic bonding
- High affinity of carbonyls to proteins
- Expected to find lower concentrations of compounds in headspace

Carbohydrates

- Main effect due to modification of solutions viscosity
- Moderate effect due to molecular interaction
- Both retention and salting out effects have been observed

PCA Aroma Data

PCA SBSE Data

Partial Least Squares Regression

• Used for predicting sensory data from instrumental data

• Creates linear models to relate Y to X

• Creates models to predict Y from X

PLS models to predict aroma sensory data for (A) banana, (B) almond, (C) dryhop and (D) apple from instrumental data obtained by SBSE-GCFID analysis

R² and Q² values of the models to predict aroma sensory descriptive data

	SBSE		SPME		SPDE	
Attribute	R ²	Q ²	R ²	\mathbf{Q}^2	R ²	Q ²
Banana	0.583	0.162	0.209	0.042	0.595	0.195
Almond	0.351	-0.076	0.180	-1.036	0.558	-0.044
Dry-Hop	0.755	-0.279	0.074	-0.540	0.963	-0.218
Banana	0.775	0.205	0.141	0.075	0.850	0.267

Observations

CONCLUSIONS

- Non-volatile fraction of model beer solutions influenced the volatile fraction behavior and sensory perception of the beverage
- Proteins played a bigger role in sensory perception than carbohydrates
- Results differed between the instrumental and the sensory results

CONCLUSIONS

• The PLS results indicated a weak correlation between the sensory and the instrumental data

• The results question the validity of directly relating instrumental data to sensory evaluation

CONCLUSIONS

- PCA showed clear differentiation among model beer samples mainly driven by the protein concentration
- Chemical volatile analysis can provide valuable information about volatile composition but it is not able to provide a complete flavor profile for beer

THANK YOU!!!!!

