Leveraging Next Gen Sequencing to
Improve Brewery Quality Control

Dan Driscoll — Avery Brewing Company
Phillip Richmond — University of Colorado

ASBC Annual Conference, Chicago.
June 5%, 2014.



Presentation Outline

Introduction to Avery

Collaborative effort with CU

Next Gen Sequencing

Design of a brewery-specific diagnostic test
Practical application

Additional possibilities for NGS in brewing

&

CIENCE

Aimny



Avery Brewing Compan

W

» History
» Productior
o Setup

° Challenge

‘—I
e B - i " " 1 &
- - : h :
m—' 3 472 | 598 | 859 [1,13|1,54] 2,00

2,76|3,40|5,12[5,16 | 6,92| 10,6 12,4 14,8
e , |2,83]239]2,77[3,59| 4,66 5,97 7.29[10313,0[ 158 16,0 21,6 35,2 40,9 [ 47,8 11,4
"] = sales dollars per oDl Proguced | 520 [$196]$1975216[$239 5243 52595275 $268 $260| $323[$321| $320| $302 $304 | $309| 3364




QC Concerns at Avery

» Cross contamination of house yeasts

» Agar plating methods for detection now
- 48 hrs, and subjective

« ASBC method for “fingerprinting” (Yeast -13)
> No strain info

> Are small amounts of “contaminant” DNA
distinguishable?

» Generation of phenolic IPA
- Destroying beer costs money and time

« What do we need? < |




Opportunity

» CU BioFrontiers Campus

* Next Generation Sequencing Lab
* Dowell Lab

> Yeast lab that focuses on distinguishing
individuals within a population, and correlating
genotypes with phenotypes

» Collaboration and open exchange of ideas
* Publication potential?




Next Gen Sequencing

» Speed (DNA to sequence in 26 hours)

» Accuracy (100x coverage per
genome)

» Data quality (~1% error rate per read)
» Cost (~$500 per strain)
» Bioinformatics and annotation

- Raw data to assembled genomes
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Strain coverage
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e ~25 — 30 different brands per year, 6 yeast
strains cover >98% of total 2013
production



Diagnostic Test Implementation

identifying SNPs
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Find all differences between the strains
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Finding Single Nucleotide Polymorphisms (SNPs)
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Homozygous SNP counts

Homozygous SNPs

® Need to use 9000
homozygous locations
for the test to work
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Diagnostic Test Implementation
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identifying SNPs
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Restriction Digest Sites

Restriction Digest Sites

® Took the recognition s
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Ale Ablated Digest Site

chrll
[ |
N 41 bp i
61,060 bp 61,070 bp 61,080 bp 61,090 bp
| | | | | | |
D d
[0-103]
O C L A
[ A
c ' ! A
A - ! l ’\-
i
i
i
[0- 347] .
(J
S Pl A
] A
o A
C L A
I A
i
i i
[0-152]
. -
» ® rl
i
i
i
i
[0-186]
. -
» L ]
-
[
i
C) . . i i

Sequence G GCATTTAGGAAGAATGATCUG AT A G GATUCAATATAMA



Diagnostic Test Implementation

................

identifying SNPs o B = — =
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Diagnostic Test Implementation

|dent|fy|ng SNPs

Il

... TCTAGA...3
3...AGATCT...5
Overlap with

restriction digest sites

DeS|gn primers and PCR

amplify a region ‘_>
— encapsulating the SNP

Digest PCR
product and run on
gel to find different
banding patterns

Cor e



Diagnostic Test Identifies Ale vs. Belgian

® Tested to make sure they all
amplify a single band, then
ran the digestion across all
four strains.

® As expected, only Belgian
PCR products get cut

550 bp
S —
300 bp 250 bp
[

[




Mimicking Contamination Levels

@m 1mL, 1.0 OD cultures

25% 50% 75% 100%
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PCR to confirm pre-digestion product
Al A2 A3 A4 A5

A3 A4

550 bp
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Practical Uses

e This test will be performed in addition to
plating, during propagation and
fermentation.

 PCR and electrophoresis

» Creation of strain-specific PCR probes for
use in gPCR

Perfect match TagMan® probe Single mismatch TagMan® probe
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Potential Downside

» Brewery-specific

» Will not detect all
yeast contaminants

 Rigidity In recipe
design and
formulation




Practicality at Yeast Supplier Level

» Potential coverage of hundreds
of strains

for customers

» Development of a quick,
guantitative assay for strain
identification

» Troubleshooting




Other Possibilities for using NGS

- Next generation sequencing can
go beyond genomic DNA analysis

. O
—RNA-seq gives us a snapshot of the ‘
yeast transcriptional profile c
H3C/ \H
- Poor yeast performance and off  acetaidehyde
flavors

—RNA sequencing for up or down Lo
regulation of individual genes '

— Potential changes in process control




Finding Differentially Expressed Genes

House House

Control Control Spin down sample from
fermentation tank

Isolate RNA

Sequence RNA fragments  =—F__
Map to genome and
L R R SRR Ca” dlﬁ:e_rentlal P —
Gene A Gene B Gene A Gene B €XPression over genes Gene A Gene B



Differential Expression In the Metabolic
Pathway
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Metabolic Overview
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Ongoing work /&\

WORK IN PROGRESS

 RNAseq has given us a unique look at
this confounding problem

» Differential expression surrounding
glucose metabolism could hint at
different carbon levels present in the
media

» Has potential to influence brewing

/\ practices in the future

WORK IN PROGRESS




Industry Recommendations

* Be aware of potential yeast cross
contamination if using more than one
strain

e Consider the use of Next Generation
Sequencing to address QA/QC issues

e Seek out collaborations with academic
institutions

* Be open to the exchange/publication of
information that may be applicable to
other brewers



Presentation Recap

» Bacterial or wild yeast contamination are not the
only types of contamination in a brewery

» Next Gen Sequencing as a potential tool

» Development of brewery-specific yeast purity
assay for Avery

» Potential use of NGS data extends to yeast
suppliers as well

» Other ongoing applications in brewing science
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Exploratory RNA Seqg

® Acetaldehyde buildup

® Matched gravity between samples, burped off

bottom of fermentation tank, pelleted cells,
isolated RNA.

® One Squashy sample
® Two Control samples

® RNAseq provides genomic coverage to
check for mutations between samples

® Attempting to see if expression patterns
emerge from comparing the squashy and
control samples.



Genomic Differences from RNAseq

» Wanted to see if the problem in the
fermentation was caused by a
mutation that swept the population

- Chromosomal copy number changes
> SNPs

. 4N_G2 RNA




No large chromosomal changes
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Allelic frequencies match up
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No standout SNPs called uniquely to

Squashy sample

- SNP calling pipeline
on Controll,
Control2, Squashyl

- Intersect SNPs,
define unique SNPs,
examine Squashy-
unique set

- No convincing SNPs
present in dataset

Raw Quality
Analysis

Map
Tailor
Call Variants

Visualize

Compare

* FastX toolkit to identify the

need for trimming, clipping, read
splitting.

* BWA map the paired end reads (BWA

is better than bowtie2 around indels
and multiple SNPs within a single
read)

* GATK IndelRealigner and Picard

MarkDuplicates

* GATK UnifiedGenotyper to call

SNPs/INDELs

* Visualize in IGV

* GATK MergeVCF followed by python

script to compare across samples



Calling Differential Expression

» Ran the Cufflinks pipeline to get
differential expression on the RNA-seq
data

» 108 differentially expressed genes (g-
value < .05)

» 285 differentially expressed genes (g-
value < 0.1)

» GO primarily enriched for cell-cycle
related genes (samples weren’ t
matched in growth phase)



SNP calling pipeline

Raw Quality « FastX toolkit to identify the need for
Analysis trimming, clipping, read splitting.

Map * BWA map the paired end reads

* GATK IndelRealigner and Picard

Tailor MarkDuplicates

* GATK UnifiedGenotyper to call

Call Variants SNPs/INDELSs

Visualize e Visualize in IGV

* GATK MergeVCF followed by python script

Compare to compare across samples



“Colony”-PCR prep

House ﬁ ﬁ ﬁ i .

Centrlfuge 2 min. to
peHetceHs

20mM NaOH, 10
minutes at 95°C

Quick Spin again to
pellet cells

PCR using 1:10 @
dilution of supernatant

x5 8

Restriction Digest PCR
products



With the use of a gPCR machine

o Alternatively use
a gPCR machine
with probes o
designed over e ==t —dmT
SNP dense - )
regions (higher .
SENSItIVILY, MOIe .. wo 6o @ o o
expensive
overhead)
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Metabolic Overview
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