

UNITED KINGDOM · CHINA · MALAYSIA

A comparison of electron paramagnetic resonance (EPR) spectroscopy with other staling indices to assess the impacts of brewhouse gallotannin addition on beer flavour stability

Jörg Maxminer¹, Rod White², Jonathan McMaster³ & David J. Cook¹

¹ University of Nottingham, School of Biosciences

² Molson Coors plc,

³ University of Nottingham, School of Chemistry

Overview

- Introduction & hypothesis of research
- Trial design and analytical methods

 Pilot scale trials (16 hl)
 Large scale trials (1500 hl)
- Results
- Conclusions

Introduction

- Gallotannins (GT brewing
 - Naturally sourced gallnuts
 - Hydrolysable tanr
 - Glucose core surr gallic acid

The Science of Beer

Hypothesis

- How might gallotannins (GT) influence beer flavour stability?
 - Ability to chelate metal ions (especially Fe(II))
 - Radical scavenging ability
 - Reduced formation of staling aldehydes and staling aldehyde precursors

Trial design - Pilot scale

- High Gravity Lager-style beer (16°P)
- Three different trial 16 hl brews
 - Control with no addition
 - Mash conversion vessel (CV) addition of 3g/hl finished beer (FB) at mashing in
 - Wort kettle addition of 2.5 g/hl FB at 10 min before the end of boil
- Evaluate the effects of the gallotannin additions at key points of the process and in the final product

Trial design

- Used same recipe and GT dosing regime as for pilot scale trials
- 1500 hl per brew, 1.5 or 3 brews to fill one fermenter, respectively
- 2 controls, 2 mash CV additions, and 1 wort kettle addition runs produced into final packaged beer
- Storage trial over 9 months at 20°C

Analytical methods

- Staling aldehydes via solid phase micro extraction (SPME)-GC-MS with on fibre derivatization
 - Derivatization agent PFBOA
 - Extraction time of 60 min at 50°C
- Thiobarbituric acid index (TBI)
 - Spectrophotometer reading absorption at 448nm
- Sulphur dioxide determined by distillation method
 - NaOH (0.1 mmol)

The Science of Beer

Analytical methods (2)

- Metal ion content determined by inductively coupled plasma mass spectrometry (ICP-MS)
 - Samples diluted 1/10 with nitric acid (2%)
- Sensory analysis
 - Expert brewery tasting panel consisting of 9 to 11 tasters
- EPR Antioxidant potential (Area)
 - PBN spin trap (50 mmol)
 - Forced ageing at 60°C for 200 min

EPR metric

EPR metric - Lag time

EPR metric - T₁₅₀

EPR metric - Area

Results – Pilot scale

Wort - EPR Area under curve

Comparison of EPR peak intensity (free radicals) of GT wort kettle addition before and after the addition of GT

—Wort kettle 10 min before end boil after 200 min

Comparison of EPR peak intensity (free radicals) of GT wort kettle addition before and after the addition of GT

----Wort kettle End boil after 200 min ----Wort kettle 10 min before end boil after 200 min

Thiobarbituric acid index (TBI)

Fe-levels (ppb)

Control Mash CV Wort kettle

The Science of Beer

Summary – Pilot scale

- Both Mash and Wort Kettle GT addition improved the oxidative stability of the wort
- Mash and Wort Kettle GT additions showed essentially the same benefits at Cooled Wort as measured by TBI and EPR metrics
- **GT addition substantially reduced iron levels** in cooled, clarified wort as validated by ICP-MS

Summary – Pilot scale

- The benefits observed in Cooled Wort from GT additions were negated by high Fe pick-up during the brewing process to packaged beer
- Also the reducing power of the yeast during fermentation could have moderated the benefits of GT addition observed in the TBI of cooled wort

→ Trials repeated at full-scale using the same addition regime

Results – Large scale brewing trials ΠT **Finished beer EPR area** UNITED KINGDOM · CHINA · MALAYSIA

The Science of Beer

The University of

Nottingham

Metal ion contents in fresh beer samples

t-2-nonenal beer samples during storage at 20°C

Sensory Analysis after 9 months storage at 20°C

Summary Full-scale brewing trials

- No significant difference between any of the trial conditions was observed for t-2-nonenal or sensory analysis
- No significant effect of the GT addition on Felevels in finished beers
- In general very low Fe-levels, good sensory scores and acceptable t-2-nonenal formation for all samples

Summary Full-scale brewing trials

- EPR results indicated a higher radical formation rate in the kettle addition trial, but this didn't correlate with sensory staling or aldehyde data
- EPR results might have been influenced by other factors:
 - Wort kettle addition showed higher Mn-level and lower SO₂-level (3 mg/l fresh beer)
 - Control A had very low Fe-level and the highest SO₂-level (5 mg/l fresh beer)

Conclusions

- Clear benefits of GT addition were observed in the brewhouse for both addition points:
 - Chelation of, and complex formation with, Fe-ions
 - Scavenging of radicals
 - Lower TBI
- No clear evidence of any impact of GT addition on the flavour stability of finished beer
- Complimentary indices for flavour stability are required to understand and predict beer staling

The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Acknowledgments

- MolsonCoors UK
- University of Nottingham
- David Cook
- Rod White
- Jonathan McMaster

At MillerCoors:

- Bob Foster
- Roman Ortiz

Thank you for your attention!

UNITED KINGDOM · CHINA · MALAYSIA

Control strong wort EPR spectrum after 200 min using a high-sensitivity cavity showing additional unknown peaks

