

Guy Derdelinckx Zahri Shokribousjein David Santiago Riveros Galan Mohammadreza Khalesi Nathalie Mandelings **Sylvie Deckers** Anne-Françoise Pypaert Hubert Verachtert **Gumer Santos** Xavier Pirlot Paul Arnott **Dimitri Staelens** Hedwig Neven **Christine Peeters** Kurt Gebruers

In collaboration with : Christina Schoenberger (Barth Innovation) Jean Titze (Döhler Gmbh) Daniel Hagmeyer (Microtrac Gmbh) Javier Rodriguez (Universidad Madrid –Spain) Tuija Sarlin (VTT – Finland)

The Science of Beer

KU LEUVEN

KU LEUVEN

Chicago- BREWING SUMMIT-JUNE, 2014

Chicago- BREWING SUMMIT-JUNE, 2014

SURFACE PROPERTIES INVOLVED BY PRIMARY GUSHING : 1. Nanoscale approach

1.1. CLASS 2 Hydrophobins

SURFACE CHEMISTRY OF CLASS 2 HYDROPHOBINS : NANOASPECTS

Primary structure of CLASS 2 hydrophobins

disulfide bridges

The Science of Beer

SURFACE CHEMISTRY OF CLASS 2 HYDROPHOBINS : NANOASPECTS

Primary and ternary structure of CLASS 2 hydrophobins

LEGEND:

The Science of Beer

A: X-Ray crystal structure of the Class 2 hydrophobin HFB II in which the two hairpins are shown in red and purple. Some aliphatic chains of hydrophobic amino acids of the hydophobic patch are shown in yellow.
B: X-Ra(Hakanpää et al., 2004) f the Class 2 hydrophobin HFB II in which the hydrophobic patch is shown in green and the α-helix (spirale) and the b-sheets (arrow) are in cartoon representation.

(Szilvay, 2007)

SURFACE CHEMISTRY OF CLASS 2 HYDROPHOBINS : NANOASPECTS

SCIENTIFIC AND COMPREHENSIVE APPROACH

SPECIFIC physico-chemical properties of CLASS 2 HYDROPHOBINS

SPECIFIC PROPERTY OF CLASS 2 HYDROPHOBIN

Langmuir

pubs.acs.org/Langmuir

Article

Surface Pressure and Elasticity of Hydrophobin HFBII Layers on the Air–Water Interface: Rheology Versus Structure Detected by AFM Imaging

Rumyana D. Stanimirova,[†] Theodor D. Gurkov,[†] Peter A. Kralchevsky,^{†,*} Konstantin T. Balashev,[‡] Simeon D. Stoyanov,^{§,#} and Eddie G. Pelan[§]

Published in LANGMUIR, **2013**, *29*, 6053 - 6067

The Science of Beer

SURFACE PROPERTIES INVOLVED BY PRIMARY GUSHING : nanoscale approach

KU LEUVEN

2. Gaseous CO₂

SURFACE PROPERTIES OF GASEOUS CARBONIC ACID : NANOASPECTS

The Science of Beer

Though the presence of two dipoles **Carbon dioxide** is a <u>hydrophobic gas</u> because...

both radicals face each other and annihilate their "electron donor" properties

SURFACE PROPERTIES INVOLVED BY PRIMARY GUSHING : nanoscale approach

3. Hydrophobic interaction between gaseous CO₂ and the hydrophobic patch of CLASS 2 hydrophobins

The Science of Beer

KU LEUVEN

The Science of Beer

Chicago- BREWING SUMMIT-JUNE, 2014

SURFACE PROPERTIES INVOLVED BY PRIMARY GUSHING : nanoscale approach

4. Nanobombs hypothesis

KU LEUVEN

Chicago- BREWING SUMMIT-JUNE, 2014

> SURFACE PROPERTIES INVOLVED BY PRIMARY GUSHING : 2. From an hypothesis to a sustainable mechanism

> > EUVEN

Prerequesites TO INDUCE PRIMARY GUSHING

Parameters THAT INFLUENCE THE <u>ONSET</u> OF PRIMARY GUSHING

Parameters THAT INFLUENCE THE <u>VOLUME EXPULSED</u> BY PRIMARY GUSHING

Chicago- BREWING SUMMIT-JUNE, 2014

> SURFACE PROPERTIES INVOLVED BY PRIMARY GUSHING :

> > **KU LEUVEN**

2. From an hypothesis till a sustainable mechanism

2.1. **PREREQUESITES TO** <u>INDUCE</u> primary

Prerequesites TO <u>INDUCE</u> PRIMARY GUSHING

HYDROPHILIC SOLID SURFACE

HYDROPHILIC LIQUID SURFACE

CRITICAL QUANTITY OF CLASS 2 HYDROPHOBINS

The Science of Beer

Prerequesites TO <u>INDUCE</u> PRIMARY GUSHING

Chicago- BREWING SUMMIT-JUNE, 2014

Prerequesites TO <u>INDUCE</u> PRIMARY GUSHING

2.b.CLOSING OF CLASS 2 HYDROPHOBIN SHELL Law of YOUNG-LAPLACE

The Science of Beer

> SURFACE PROPERTIES INVOLVED BY PRIMARY GUSHING :

> > EUVEN

2. From an hypothesis till a sustainable mechanism

2.2. **PARAMETERS** that INFLUENCE the <u>ONSET</u> of primary gushing

2. From an hypothesis till a sustainable mechanism
2.2. PARAMETERS that AFFECT the ONSET of primary gushing

2.2.1. Where are the nanobubbles in non shaked bottles ?

KU LEUVEN

Fraction	Volume
Fraction 1	$70 \ \mathrm{mL}$
Fraction 2	50 mL
Fraction 3	50 mL
Fraction 4	50 mL
Fraction 5	50 mL
Fraction 6	50 mL

Chicago- BREWING SUMMIT-JUNE, 2014

_

Gushing (g)

Gushing (%)

INFLUENCE THE ONSET OF PRIMARY GUSHING

The Science of Beer

Parameters that AFFECT THE <u>ONSET</u> OF PRIMARY GUSHING

explosion

The Science of Beer

AFFECT THE ONSET OF PRIMARY GUSHING

The Science of Beer

Parameters that INFLUENCE THE <u>ONSET</u> OF PRIMARY GUSHING

Chicago- BREWING SUMMIT-JUNE, 2014

> SURFACE PROPERTIES INVOLVED BY PRIMARY GUSHING :

> > **KU LEUVEN**

2. From an hypothesis till a sustainable mechanism

2.3. **PARAMETERS** that INFLUENCE the <u>VOLUME EXPULSED</u> by primary gushing

Parameters that INFLUENCE THE <u>ONSET</u> OF PRIMARY GUSHING

Chicago- BREWING SUMMIT-JUNE, 2014

INFLUENCE THE ONSET OF PRIMARY GUSHING

 $P_{nano-bubbles} = P_{bottleneck}$

The Science of Beer

INFLUENCE THE ONSET OF PRIMARY GUSHING

Energy liberated by CO₂ release

The Science of Beer

INFLUENCE THE ONSET OF PRIMARY GUSHING

Chicago- BREWING SUMMIT-JUNE, 2014

Parameters THAT INFLUENCE THE <u>VOLUME EXPULSED</u> BY PRIMARY GUSHING

The Science of Beer

CONCLUSIONS

The Science of Beer

KU LEUVEN

RISK MANAGEMENT BY PRIMARY GUSHING AN IDENTIC CONTAMINATED MALT

- depending on the brewery,
- depending on the beer type,
- depending on the beer pub,

- depending on the beer consumer's handling,
- depending on the container can provoke :
- no, poor, or severe primary gushing and desastrous financial damages.

The Science of Beer

Nanoscale approach

RISK MANAGEMENT BY PRIMARY GUSHING

The Science of Beer

KU LEUVEN

THANKS FOR YOUR ATTENTION ...

CHEERS !!!

Nanoscale approach

RISK MANAGEMENT BY PRIMARY GUSHING

PREDICTION methods CURATIVE practices

KU LEUVEN

KU LEUVEN

Nanoscale approach

RISK MANAGEMENT BY PRIMARY GUSHING

PREDICTION methods

KU LEUVEN

PREVENTIVE MANAGEMENT

normal QC : microbial detection contaminant identification

lab-scale brews or **better**,

Single malt brews at industrial scale

- Qualitative presence of Class 2 hydrofobines by ELISA (*VTT - Finland*)
- Primary gushing assessment by MC-t and <u>confirmation by DLS</u>

The Brewing Process

The Science of Beer

Chicago- BREWING SUMMIT-JUNE, 2014

Nanoscale approach RISK MANAGEMENT BY PRIMARY GUSHING

KU LEUVEN

PREDICTION methods

CONDITIONS TO OBSERVE OVERFOAMING BY MCarlsberg-t :

- Hydrophilic surface of container
- Energy liberated by nucleation of CO₂
 - explosion of nanobombs
 - rupture of hydrogen bonds

Nanoscale approach

KU LEUVEN

RISK MANAGEMENT BY PRIMARY GUSHING

PREDICTION methods

MCarlsberg-t:

<u>overfoaming volumes</u> of sparkling water are "in some cases" <u>disputable values</u> between malsters and brewers

Report of collaborative trial held by EBC Analysis Committee in 2003 concerning evaluation of **M***Carlsberg*-t

Table 1: Original data fiom the collaborative trial. All the neultran expressed in grams.

Laboratory		Sar	արհ]
	Atte	MаbB	M TP C	Malt D	1
	Wei	ght of bearl	oston openin	2 (2)	1
1	0	38	<u>ن</u>	107	1
2	0	22	0	1	1
3	0	94	9	60	1
+	0	13	8	37	1
5	0	80	3	- 63	1
6	0	95	0	13	1
7	0	28	27	24	1
8	0	22	0	3	1
9	3	80	Û	113	1
10	0	150	103	124	1
Austage	0	64	22	55	
Min.	0	13	0	1	
Max.	3	150	103	124]
Std Dav	0.95	43.8	35.1	46,6	

rapid that for 24th EBC Congress, Oals 1993, BL imple addition 4 Mailing Proceedings 뇌 Bedaman & in having metalogi 99 A-D. Kaudon tradency Vaag P. Rik, 155-1 62 <u>भूम</u>म् Ċ.

The Science of Beer

Nanoscale approach

KU LEUVEN

RISK MANAGEMENT BY PRIMARY GUSHING PREDICTION methods

MCarlsberg-t (MC-t) checked (confirmed) by the DLS detection

Fraction	Volume
Fraction 1	70 mL
Fraction 2	50 mL
Fraction 3	50 mL
Fraction 4	50 mL
Fraction 5	50 mL
Fraction 6	50 mL

The Science of Beer

Chicago- BREWING SUMMIT-JUNE, 2014

🗆 Gushing (g)

Gushing (%)

NANOFLEX Microtrac Gmbh

The Science of Beer

OVERFOAMATE OF M*Carlsberg*-t (MC-*t*) confirmed by the DLS detection

Beer with high gushing:

Flaschenbier 214						5	S/N: U2343ES			
- Sum	- Summary Size % Percentiles Pe		- Peal	eaks Summary -			-			
Data	Value	Size(um)	%Tile	%Tile	Size(um)	Dia(um) Vo		1%	% Width	
/ll(um):	0.0567			10.00	0.00294	0.0859	60	.9	0.	11
lli(um):	0.00282			20.00	0.00411	0.00405	38	.1	0.	00
IA(um):	0.00877			30.00	0.00607					
CS:	684.5			40.00	0.01399					
SD:	0.0537			50.00	0.0338					
MW:	1.22E+07			60.00	0.0584					
Mz:	0.0528			70.00	0.0870	UDef Name		UD	UDef Data	
OU:	0.0549			80.00	0.1103					
SKE	0.557			90.00	0.1419					
%Passing	80 70 50 40 30 20 			/					Schannel	↑ ↓
-		0.001	0.01 Siz	e(micror	0.1 18)	1	1	0		1 1

Particle Metrix GmbH Am Latumer See 13, 40668 Meerbuisch, Tel.: 02150-6347, boeck@particle-metrix.de

Nanoscale approach

RISK MANAGEMENT BY PRIMARY GUSHING

CURATIVE aspects

KU LEUVEN

Nanoscale approach

RISK MANAGEMENT BY PRIMARY GUSHING

CURATIVE aspects Inactivation of the hydophobic patch

KU LEUVEN

The Science of Beer

CURATIVE METHODS USE OF DISPERSED HOP ANTI-FOAM

Magnetic field assisted nanoparticle dispersion (*Chem. Commun.,* 2009, 47-49)

GC/MS chromatogram of the methanolyzed lipid extracts from hop antifoam: F = fatty acid methyl ester; A = n-alkane; W = wax ester; S = steroid compounds (A). Ion extraction of GC-MS spectrum (m/z = 57), characteristic for alkanes and wax esters (B).

Chicago- BREWING SUMMIT-JUNE, 2014

n-nonane:11.8 A

Stor Start

n-heptadecane: 20.5 A

n-tetradecane:16.3 A

The Science of Beer

(a)

n-nonane:11.8 A

n-tetradecane:16.3 A

. (a) Comparing the l hydrophobic patch of hydrophobin HFBI with n-nonane (decreases gushing of HFBI) and n-tetradecane and n-heptadecane (suppress gushing of HFBI); Microscopic image of crystals formed by (b1) HFBI (0.15 mg/mL) in distilled water, oleic acid (5 μ L/mL) in distilled water (b2) and mixture of HFBI with oleic acid (b3). All images are taken by reflected light and the scale bar indicates 20 µm.

(a)

Chicago- BREWING SUMMIT-JUNE, 2014

CURATIVE METHODS

(A)

(B)

The Brewing Process

The Science of Beer

THANKS FOR YOUR ATTENTION ...

CHEERS !!!

