

Development of a novel culture-independent method for comprehensive detection and identification of beer-spoilage microorganisms

> <u>Masaki Shimokawa</u>, Kazumaru Iijima, Koji Suzuki, Yasuo Motoyama, Hiromi Yamagishi.

> > Asahi Breweries, Ltd.

Contents

- 1. Background
- 2. Purpose and strategy

~screening a membrane × pressure cycling technology~

- 3. Results
- 4. Discussion
- 5. Conclusion

Features of Japanese beer

Unpasteurized beer has dominated the Japanese beer market.

Beer is a microbiologically stable beverage.

Beer-spoilage microorganisms

Stringent microbial quality control required.

Beer-spoilage microorganisms

Lactobacillus	Pediococcus	Pectinatus
L. brevis	Ped. damnosus	P. frisingensis
L. lindneri	Ped. claussenii	P. crevisiiphilus
L. paracollinoides	Ped. inopinatus	P. haikarae
L. backi	other Pediococcus	Other Pectinatus
L. coryniformis	Wild yeasts	Megasphaera
L. paucivorans	S. cerevisiae	M. cerevisiae
L. casei /paracasei	D. anomalla	M. paucivorans
L. plantarum	D. buruxellensis	M. sueciensis
other lacobacilli	B. custersianus	

Currently new species are also emerging!

Conventional microbiological QC test

Beer filtration

Culture

Identification

- Microscopic observations
- Gram staining
- Catalase activities
- PCR tests e.t.c...

Rate-limited process

In some urgent cases, more rapid methods may be needed!

Would it be possible to detect without culture?

Limitations of culture-independent method

	species	membrane	filtration volume	detection limit
Tsuchiya, Y. (1992)	Lactobacillus brevis	PVDF	250	30 cells/250 mL
Tsuchiya, Y. (1993)	L.brevis	Polycarbonate	250	1-9 cells/250 mL
DiMichele, L. J. (1993)	Lactobacillus	Polycarbonate	50	20 cells/mL
Satokari, R. (1997)	Pectinatus	Polycarbonate	100	20 cells/mL
Yasui, T. <u>(1997)</u>	L.lindneri	PVDF	100	63 cfu/100 mL

A comprehensive direct method with higher detection limits has been pursued for the past 20 years.

Purpose and strategy of this study

Purpose

Development of a comprehensive highly sensitive culture-independent detection method

Screening of a membrane pros and cons of each membrane type

Polycarbonate membrane

Polycarbonate (isopore type)

<u>Advantages</u> Sensitivity is relatively high. (approximately 10cells/membrane)

<u>Disadvantages</u> Filtration volume is limited. (up to 250ml)

Lotus root-like structure (Bacteria trapped on the surface.)

A trace level of beer spoilers cannot be detected

Cellulose membrane

Mixed cellulose ester

<u>Advantages</u> Filtration volume is larger. (3000ml is possible)

<u>Disadvantages</u> Sensitivity is low. (Approx. 100 cells/membrane)

Mesh-like structure (Bacteria trapped somewhere in the middle.)

Cellulose membrane

Cells are buried in membrane. Cells and DNA must be recovered more efficiently.

Mixed cellulose ester membrane × Pressure cycling technology

Pressure cycling technology (PCT)

Barocycler[™] NEP2320

A novel approach for sample preparation method using alternating levels of hydrostatic pressure.

0.1 MPa \implies 235 MPa : less than 3sec 235 MPa \implies 0.1 MPa : less than 1sec

Performance of Pressure Cycling Technology

Significant improvements in DNA yield from challenging biological and forensic samples using Pressure Cycling Technology.

> It might be possible to extract DNA from cells buried in membrane without disruption!

The performance of PCT for DNA extraction

Three extraction methods were compared

1.PCT with enzymatic treatment 2. Only enzymatic treatment 3. Only PCT

PCT was used once in this protocol.

Μ Μ

3

Ρ

Schematic flow of DNA extraction

Evaluation of sensitivity

DNA extraction with pressure cycling technology

Evaluation of sensitivity for beer spoiler

The results of *L. brevis* and *D. anomala* are shown here as an example.

Μ	1	2	3	4	M
	10 ³	102	² 10 ⁻	¹ 10 ⁰	
	L	. k	ore	vis	

As for three Lactobacillus species and four wild yeast species, the sensitivity was shown to lie between 10^{0} and $10^{1}/300$ ml of beer.

Mini summary 1

- The pressure cycling technology has enabled effective DNA extraction from the cells trapped within a cellulose membrane filter matrix.
- The detection limits of major beer-spoilage lactic acid bacteria, *L. brevis*, *L. lindneri*, *L. paracollinoides*, wild yeast (the genera Saccharomyces and Dekkera/Brettanomyces) species, were found to be as low as 10^o cells/membrane (300ml beer).

Other lactic acid bacteria and strictly anaerobic bacteria are also reported as beer spoilers...

Lactobacillus	Pediococcus	Pectinatus
L. brevis	Ped. damnosus	P. frisingensis
L. lindneri	Ped. cla <mark>u§</mark> đenii	P. crevisiiphilus
L. paracollinoides	Pcells/membrane	P. haikarae
L. backi	other Pediococcus	cells/membrane
L. coryniformis	Wild yeasts	Megasphaera
L. coryniformis L. pauci/orans	Wild yeasts S. cerevisiae	Megasphaera M. cerevisiae
L. coryniformis L. pauc¶@ans L.cells/membranei	Wild yeasts S. cerevisiae D. anomalla	Megasphaera M. cerevisiae M. paucivorans
L. coryniformis L. paucl Ofans L.cells/membrane/ L. plantarum	Wild yeasts S. cerevisiae D. anomalla D. buruxellensis	Megasphaera M. cerevisiae M. paucly of Ins Mcells/membrane

Pectinatus is reported to be more likely to pass through membrane filter than *Lactobacillus*.

Screening of a more optimal membrane

Optimization of pore size for cellulose membrane

Improvement of the DNA extraction efficiency by trapping the cells closer to the surface

The result of optimization of membrane

The results of *P. cerevisiiphilus* are shown here as an example.

The modified approach was found to be applicable to all of the beer-spoilage *Pectinatus* species.

To further improve extraction efficiency

Higher pressure (300 Mpa) model was adopted

To further improve sensitivity

Vacuum concentrator

Improves the sensitivity by evaporating DNA solution with vacuum concentrator.

Result of using a wider range of beer spoilers

The identical detection limits were accomplished.

Our modified method was also shown to be applicable to other *Lactobacillus*, *Pediococcus* and *Megasphaera*.

Mini summary 2

Series of measures in combination finally allow the detection of 22 species of beer-spoilage microorganisms with the detection limits of 10^o cells/membrane

Lactobacillus	Pediococcus	Pectinatus
L. brevis	Ped. damnosus	P. frisingensis
L. lindneri	Ped. claussenii	P. crevisiiphilus
L. paracollinoides	Ped. inopinatus	P. haikarae
L. backi	Wild yeasts	Megasphaera
L. coryniformis	S. cerevisiae	M. cerevisiae
L. paucivorans	D. anomalla	M. paucivorans
L. casei /paracasei	D. buruxellensis	M. sueciensis
L. plantarum	B. custersianus	

If filtration volume is increased up to 3000 mL

DNA extraction with pressure cycling technology

Increased filtration volume

Inoculation level (cfu)

Culture

A trace amount of bacteria in larger volume of beer was detected.

Summary

- The pressure cycling technology has enabled effective DNA extraction from cells trapped within a cellulose membrane filter matrix.
- Series of measures in combination finally allow the detection of 22 species of beer-spoilage microorganisms with detection limits of 10⁰ cells/membrane.
- Our method is able to cope with an extremely low level of contamination (10^o cell/3000ml-beer).

Comprehensive detection and identification of low levels of beer-spoilage microorganisms is achieved by direct PCR

Thank you for your attention