

Dry Hopping of Beer Examining Practical Variables in a Regional Craft Brewery

Christian Holbrook New Belgium Brewing Company August 15, 2016

Introduction & Outline

- Objective
- Current Practice
- Key Variables & Experimental Design
- Laboratory Practice
- Results & Data Analyses
- Conclusions & Opportunities

Investigate opportunities within the current process to optimize dry hop aroma potential without fundamentally changing beer flavor profile.

Current Practice

- Beer temperature 6°C & 12°C
 - What is the influence of temperature on key aroma compounds?
- Hop dosing rate 125 g/hL, 250 g/hL & 500 g/hL
 - Does more = better?
 - What is the influence when other variables are considered?
- Beer alcohol content 7.5% ABV & 9.5% ABV
 - How does alcohol concentration influence the occurrence of hop aroma compounds from dry hopping?
- Hop pellet type T90 & Enhanced T90 (E90)
 - Do we realize better transfer of key terpenes into beer with one pellet type?
 - Is there an improvement in processing capabilities with E90 vs. T90?

Outline of Laboratory Trials

- Four-way, full factorial test design.
- Investigated four key parameters of the dry hop process:
 Beer temperature,
 beer ABV%, hop
 pellet type, hop
 dosing rate.
- 72 replicates in total.

Factor	A Temperature	B ABV	C Pellet Type	D Dosing Rate		Response Template		
						Y1	Y2	Y3
	6	7.5	T90	125				
	6	7.5	T90	250				
	6	7.5	T90	500				
	6	7.5	E90	125				
	6	7.5	E90	250				
	6	7.5	E90	500				
	6	9.5	T90	125				
	6	9.5	T90	250				
	6	9.5	T90	500				
	6	9.5	E90	125				
	6	9.5	E90	250				
	6	9.5	E90	500				
	12	7.5	T90	125				Th
	12	7.5	T90	250				
	12	7.5	T90	500				in the
	12	7.5	E90	125		Al Dea		
	12	7.5	E90	250	100			11 法在
	12	7.5	E90	500			0 4	11
	12	9.5	T90	125	So Al	- 1 X /	Di al	A Star
	12	9.5	T90	250		Berthe 1	1. 1991	
	12	9.5	T90	500	Can (and the second	A Contraction	
and the	12	9.5	E90	125		Star.	E in Anos	
A	12	9.5	E90	250		S. Constat		
	12	9.5	E90	500	Sec	Contraction of the	a futer	

Materials & Laboratory

- Hop pellet types were produced from identical blends of Cascade hops grown in Washington state.
- Un-dry hopped IPA, sampled after centrifugal yeast removal per normal dry hopping operations and placed in frozen storage.
- Beer ABV% adjusted during trial sample preparation.
- Dry hop reactions took place in 500 mL glass bottles in a temperature controlled water bath on a submersible stir plate.
- Reaction times were 24 hours.
- Beer samples centrifuged and pipetted into 5mL vials, then frozen prior to GC-MS analysis.
- GC-MS Analysis: SIM; Extraction = 10 min. at 60°C w/ SPME 50/30um DVB/CAR/PDMS 2 cm; Column: DB5-MS UI 60 mx 32 um x 1 um.

IPA Aroma Descriptors:

 High amounts of myrcene, citrus (grapefruit), some green tea, grassy, linalool. Key Compounds Analyzed in Beer:

- Myrcene
- Linalool
- α-humulene
- β-caryophyllene

Results: Influence of Pellet Type

Results: Influence of ABV

Results: Influence of Temperature

Data & Results

- Organized by a pareto of coefficients. Red = $p \le 0.05$
- Identifies the significant interactions among variables.
- Significant interactions elucidated by p-values of ≤ 0.05 .

Data & Results

- A 'Pareto of Pareto Charts' (p-values ≤0.05) was used to pull all data together.
- Dosing Rate & Temperature, individually or together, represent the most significant interactions.
- ABV% less significant, and pellet type not a large influencing factor.

• A = Temperature; B = ABV%; C = Pellet Type; D = Dosing Rate.

Attribute Correlation Loadings: PC2 Upper vs. Lower Quadrants

PCA: Beer Temperature

This separation suggests that compound loadings in the upper quadrants (green: myrcene, humulene, caryophyllene) are better extracted and/or retained at lower temperatures. While samples treated at 12C are better characterized by those hop aroma compounds in the lower quadrants (linalool).

PCA: Hop Dosing Rate

Separation is evident, but not linear according to dosing rate!

- Hop dosing rate and beer temperature were the key factors influencing aroma compound concentration in this study.
- Beer alcohol concentration and hop pellet type had minor influences over aroma compound concentration in beer.
- Are the same results seen in a practical environment and are they repeatable?
 - Further investigation needed on a production scale.
- Results indicate the ability to maximize dry hop aroma potential and manipulate characteristic flavor production by changing process parameters.

Acknowledgements

The University of Nottingham

ICBS International Centre for Brewing Science

• Dr. David J. Cook

- Paul Pettinger
- Dr. Dana Sedin
- Stacey Williams
- Lindsay Barr

Questions?

