

Recent Development in Detection and Identification Methods for Beer Spoilage Lactic Acid Bacteria -A Review

Koji Suzuki, Masaki Shimokawa and Hiromi Yamagishi Quality Control Center Asahi Breweries, Ltd.

Back in 1870s

Louis Pasteur Father of Microbiology A drawing of spoiled beer Etudes sur la bière (1876)

Just 140 years ago, beer spoilage *Lactobacillus*, later known *as L. pastorianus*, was first described by Pasteur.

Lactic acid bacteria (LAB) as major spoilers in beer

Brauwelt Back, W. (2003)

Beer spoilage incidents in Japan

- 1986 Lactobacillus sp.
- **1989** Lactobacillus paracollinoides
- **1991** Lactobacillus lindneri

etc.....

Major brewing companies in Japan experienced spoilage incidents during 1980 - 1995.

Rapid expansion of unpasteurized beer in Japan

No detection on quality control (QC) media

New species

Issues addressed today

1. LAB strains hard to detect by QC media

2. Emergence of new spoilage LAB species

Part 1 LAB strains hard to detect by QC media

Microbiological QC tests - Features and problems -

Easy-to-culture spoilage LAB

Hard-to-culture spoilage LAB

Stealth bomber in the brewing industry?

Enigma: Visible and invisible strains even among the identical species.

Culturability lost through beer adaptation

"Die-hard Beer Lover" Hypothesis

Development of an advanced beer-spoiler detection (ABD) medium

<medium compositions=""></medium>	
MRS broth (powder)	2.61g
Sodium acetate	0.5g
Cycloheximide	10mg
Agar	15g
Beer (pilsner-type) 1000ml	
pH 5.0	

The medium contains only 0.26% MRS (de Man, Rogosa and Sharpe) broth in beer and its pH is adjusted to 5.0 to detect hard-to-culture LAB strains, as well as easy-to-culture ones.

Comparison between ABD and other QC media

Hard-to-culture L. lindneri strain

Anaerobic incubation at 25°C for 14 days

Survey of brewing environments

56% cases surveyed in stealth mode

More rapid approach needed

About 100,000,000 cells are needed for human eyes to detect them... (3 - 14 days)

Microcolony method PC membrane **Beer filtration ABD** medium **Incubation 3** days **10 - 100 cells CFDA staining** are enough! **30-60 min Detection** 15 min

µFinder Inspection System

Species identification by fluorescence *in situ* hybridization (FISH) method

Asano, S., Iijima, K., Suzuki, K, Motoyama, Y. *et al.*, *J. Biosci. Bioeng.* (2009) Yasuhara, T., Motoyama, Y. *et al.*, *J. Am. Soc. Brew. Chem.* (2001)

Advantages of microcolony approach

Why not eliminate culturing process?

Membrane filter magnified by electron microscope

Surface structure

Cross section

Membrane filters are *ca* 150 μ m thick with a mesh-like structure. It is never an easy task to recover one tiny bacterial cell (2 μ m) trapped deeply within the membrane matrix.

Pressure cycling technology (PCT)

The cells and DNA of beer spoilage LAB are efficiently released from the membrane matrix. As a result, 12 species of beer spoilage LAB can be detected at a single cell/300ml level without culturing.

Culture-independent direct method

Part 2 Emergence of new beer spoilage species

Beer spoilage LAB species

Genus Lactobacillus L. brevis L. lindneri L. paracollinoides L. backi L. paucivorans L. rossiae L. casei **Other lactobacilli**

Genus Pediococcus Ped. damnosus Ped. claussenii Ped. inopinatus Other pediococci

Currently more than 10 LAB species have been reported to spoil beer and new species are emerging.

Hop resistance mechanisms by efflux pumps

Intracellular environment

Hop-resistance genes, *horA* and *horC*, seem to be acquired through horizontal gene transfer.

What is horizontal gene transfer?

Interspecies exchanges of hop-resistance genes

Hop resistance genes, such as *horA* and *horC*.

Comprehensive detection of beer spoilage LAB

horA positive: 93.2% (Total 82 strains) *L. brevis* 35, *L. paracollinoides* 28, *L. lindneri* 9, *L. backi* 2, *Ped. damnosus* 8

horC positive: 97.7% (Total 86 strains) *L. brevis* 35, *L. paracollinoides* 30, *L. lindneri* 10, *L. backi* 3, *Ped. damnosus* 8

horA or horC: 100% (Total 88 strains) L. brevis 36, L. paracollinoides 30, L. lindneri 11, L. backi 3, Ped. damnosus 8

We can target these genetic markers for determining spoilage ability of LAB!

Seven new LAB species discovered since 2000 have been shown to carry *horA* or *horC*.

Another new threat? Spread of a new type of beer spoilage LAB

LAB with ropy phenotype

Beer becomes viscous and slimy like a jelly. This is called ropiness in the brewing industry.

The ropiness used to be rare but this type of spoilage seems to be on the rise in Europe.

Emergence of a new type of LAB

Ropy LAB with extracellular polysaccharides (EPS)

EPS acts as a protective barrier against various stress factors.High resistance against heat (up to 25PU) and sanitizers.

One of the most difficult beer spoilers to eradicate !!!

Discrimination of EPS-producing LAB is important.

Interspecies exchanges of slime-producing genes

Beer spoilage *L. brevis* Beer spoilage Ped. damnosus Ped. claussenii

gtf (glycosyltransferase) gene

Different beer spoilage LAB species possess the *gtf* genes with 98 - 99% nucleotide identities.

Beer spoilage LAB in evolution - Hypothesis -

Acquisitions of advantageous genes

Adaptive processes to counteract human efforts, such as pasteurization and CIP?

Evaluation of specificity

 Ropy L. brevis
Ropy Ped. damnosus
Ropy Ped. claussenii
Von-ropy strains of beer spoilage LAB

The *gtf*-specific PCR was shown to detect ropy LAB strains specifically, independent of species.

The case for optimism ?

Beer jelly, anyone ???

> Immunostimulatory action Anti-tumor effect

Cholesterol reduction

EPS produced by LAB have several health benefits !

Summary

1. Hard-to-culture strains can be detected by using beer-based media or the pressure cycling technology.

2. New beer spoilage LAB species can be identified by targeting hop resistant genes, such as *horA* and *horC*.

3. New threats are constantly emerging and we need to deal with them.

This year we are celebrating 21st anniversary of no microbiological incidents by Japanese major brewers !

Thank you for your kind attention !