

Summary

- ✓ Although beer has high microbiological stability, few species can spoil bee and produce turbidity, off-flavor, and/or undesirable taste.
- \checkmark To control the microbiological quality, brewers must understand the characteristics of each beer-spoilage microorganisms.
- ✓ In recent years, novel beer-spoilage microorganisms have been reported.
- ✓ This study reports beer-spoilage ability and taxonomy of VTT E-94560 isolated from beer.

Origin and current taxon of VTT E-94560

deposited to VTT culture collection as Leuconostoc lactis

reclassified

as Lactobacillus rossiae*

*The potential beer-spoiler studied in the present report

Physiological characterization

The distinction between VTT E-94560 and *L. rossiae* JCM 16176^T as determined via typical physiological tests, is summed up (Table 1).

✓ Cells of VTT E-94560 were shorter than those of *L. rossiae* JCM 16176¹ \checkmark VTT E-94560 can ferment many more kinds of carbohydrates than *L*. rossiae JCM 16176^T; however only JCM 16176^T can ferment L-Arabinose

Table 1		Lactobacillus sp.	L. rossiae
Physiological defferences		VTT E-94560	JCM 16176 ^T
between VITE-94560 and $L.$ rossiae JCM16176 ^T	cell width x length(µm)	0.5 x 0.5-1.0	0.5 x 1.0-1.5
+, positive reaction	Acid production from:		
-, negative reaction	L-Arabinose	-	+
	D-Mannose	+	W
	Melibiose	+	-
	D-Arabitol	+	-
	Gluconate	+	W
	2-ketogluconate	+	-
Y LANGE	Fig. 1 SEM observ VTT E-94560 cells	vation of culture were cultured at	ed cells 25°C in

degassed pilsner-type beer adjusted to pH5.0.

WORLD BREWING CONGRESS 2016

Taxonomic study of a novel beer-spoilage Lactobacillus species closely related to Lactobacillus rossiae

O Yuki Asakawa¹, Nobuchika Takesue¹, Satoshi Shimotsu¹, Kazumaru lijima¹, Koji Suzuki², Yasuo Motoyama¹, Masayuki Aizawa¹ Research Laboratories for Alcohol Beverages¹ and Quality Control Center², Asahi Breweries, Ltd.

E-mail:yuki.asakawa@asahibeer.co.jp, nobuchika.takesue@asahibeer.co.jp

(3)].	 (1) Bacterial inoculation tests Inoculated and incubated at 2 examined for visible growth u (Fig. 2, Table 2). Strain: VTT E-94560 or <i>L. rossia</i> Sample: bottled commercial pilsne (pH 4.0–4.6, 10–20 BU, a Concentration: 1,000 cfu/m (2) Hop resistance genes (<i>horA</i> and <i>horC</i>)-specific PC A relationship between beer-ability and the presence of hore 	25° C, ip to 90 da e strains or beers alc. 4.8–7. I CR test spoilage	ays 1%) 1%) caused Using Lef	hoculated	inocu inocu inocu inocu ing of spectrum d bottled p 4.85, 208 ed (negat Right	late
	 genes were reported in some Presence of hop resistance g by PCR test using <i>horA or ho</i> Table 2 Results of inoculation tests (1) inoculation tests, -, no grow (2) PCR tests, +, positive; - , r 	and hop wth; numb	A and <i>hor</i> c primers resistanc ers (1-90)	C, were exa [ref.(1),(2)] (e genes-sp e , days to cau	mined Table 2). ecific PC use visible	R t e e gr
	 genes were reported in some Presence of hop resistance g by PCR test using <i>horA or ho</i> Table 2 Results of inoculation tests (1) inoculation tests, -, no grow (2) PCR tests, +, positive; - , r 	and hop wth; numb negative	A and <i>hor</i> c primers resistanc ers (1-90)	C, were exa [ref.(1),(2)] (e genes-sp , days to cau	mined Table 2). ecific PC use visible (2) PC	R t e e gr
	Presence of hop resistance of by PCR test using <i>horA or ho</i> Table 2 Results of inoculation tests (1) inoculation tests, -, no grov (2) PCR tests, +, positive; - , r	and hop wth; numb negative (1) 10BU pH4.0 alc.4.8%	A and hor c primers resistanc ers (1-90) inoculation 17BU pH4.4 alc.5.0%	C, were exa [ref.(1),(2)] (e genes-spe , days to cau test 20BU pH4.6 alc.7.1%	mined Table 2). ecific PC use visible (2) PC	R te e gr
	Presence of hop resistance g by PCR test using <i>horA or ho</i> Table 2 Results of inoculation tests (1) inoculation tests, -, no grov (2) PCR tests, +, positive; - , r strains <i>Lactobacillus</i> sp. VTT E-94560	and hop wth; numb negative (1) 10BU pH4.0 alc.4.8% 30	A and hor c primers resistanc ers (1-90) inoculation 17BU pH4.4 alc.5.0% 80	C, were exa [ref.(1),(2)] (e genes-spe , days to cau test 20BU pH4.6 alc.7.1% 23	mined Table 2). ecific PC use visible (2) PC horA	R te e gr
	Presence of hop resistance of by PCR test using <i>horA or ho</i> Table 2 Results of inoculation tests (1) inoculation tests, -, no grov (2) PCR tests, +, positive; - , r strains <i>Lactobacillus</i> sp. VTT E-94560 <i>L. rossiae</i> JCM 16176 ^T	and hop with; numb negative (1) 10BU pH4.0 alc.4.8% 30 N.T.	A and hor c primers resistanc ers (1-90) inoculation 17BU pH4.4 alc.5.0% 80 -	C, were exa [ref.(1),(2)] (e genes-spe , days to cau test 20BU pH4.6 alc.7.1% 23	mined Table 2). ecific PC Jse visible (2) PC horA	R to e gr
	Presence of hop resistance g by PCR test using <i>horA or ho</i> Table 2 Results of inoculation tests (1) inoculation tests, -, no grov (2) PCR tests, +, positive; - , r strains <i>Lactobacillus</i> sp. VTT E-94560 <i>L. rossiae</i> JCM 16176 ^T <i>L. rossiae</i> ABBC 636-639*	and hop with; numb negative (1) 10BU pH4.0 alc.4.8% 30 N.T. N.T.	A and hor c primers resistanc ers (1-90) inoculation 17BU pH4.4 alc.5.0% 80 -	C, were exa [ref.(1),(2)] (e genes-spe , days to cau test 20BU pH4.6 alc.7.1% 23 - N.T.	mined Table 2). ecific PC Jse visible (2) PC horA + - -	R te e gr

✓ Under these testing conditions, including beer-type and strain selection, both the beer-spoilage ability and the presence of hop-resistance genes of VTT E-94560 differ from those of other *L. rossiae* strains.

